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A THEORETICAL INVESTIGATION OF 

THE AERODYNAMICS OF SLENDER WING-BODY COMBINATIONS 

EXHIBITING LEADING-EDGE SEPARATION 

By A. H. Sacks, R. E. Lundberg 
and C. W. Hanson 

Vidya Division, Itek Corporation 

SUMMARY 

A theoretical analysis is presented for calculating the normal force 
and center of pressure on plane wing-body combinations exhibiting leading- 
edge separation. The mathematical model for the separated flow involves 
the shedding of a number of discrete vortex pairs along the wing leading 

edge, each pair satisfying the Kutta condition at the position of shedding. 
The subsequent lateral positions of these vortex filaments are calculated 
step by step, so that the rolling up of the vortex sheet is taken into 
account. Hence, the method predicts the chordwise normal-force distributions 
as well as the vortex sheet shapes over the configuration. 

Two techniques are presented for predicting the rate of shedding of 
vorticity along the wing leading edge. A purely theoretical method is pre- 
sented which predicts the shedding rate analytically but which is restricted 
to very slender configurations. An alternative semi-empirical method is 
also presented which utilizes delta-wing experimental data to predict the 
shedding rates on wings of general planform and on wing-body combinations. 

Numerical calculations have been carried out for wings and wing-bodies 
in the range of aspect ratios 0.5 to 2.0. The semi-empirical method was well 
behaved in all cases, but convergence appeared to deteriorate for the theo- 
retical method as the aspect ratio increased. The theoretical method over- 

predicts the nonlinear separated normal force, particularly for aspect ratios 
above 1.0. However, the semi-empirical technique yields satisfactory agree- 
ment with experiment for both normal force and center of pressure on the 
wings and wing-body combinations investigated. 



INTRODUCTION 

In aircraft which are designed,for. sustained flight at superL.onic 
speeds, two general characteristics have evolved: the configurations are 

slender, having a narrow fuselage and highly swept wings; and the leading 
edges of the wings are sharpened. Both of these characteristics arc prompted 
by an attempt to minimize aerodynamic drag during the supersonic cruise. 

When such aircraft are operated at low speeds and high angles of attack, as 

during the landing maneuver, the flow separates from the sharp leading edges 
and vortices form above the wing surface. Aerodynamically, the vortex for- 
mation results in an increase of the lift from that attained when the flow 

remains attached to the upper surface. Furthermore, the variation of lift 

coefficient with angle of attack becomes nonlinear. 

A simplified, qualitative picture of the flow field about a sharp 

leading-edged delta wing is presented in Figure 1. The boundary layer sepa- 

rates at the sharp leading edge, forming a vortex sheet which rolls up into 

a spiral over the top surface of the wing. For delta wings, a sheet is shed 

from the leading edge on each side and the flow pattern is, in the absence of 

yaw, symmetric. This picture is, admittedly, an oversimplification; second- 

ary and even tertiary vortices have been noted over the top surface of sepa- 
rated delta wings. 

The objective of the present investigation is to develop methods for 

predicting the aerodynamic characteristics of slender aircraft when flow 

separation is present. The prediction of aerodynamic characteristics, as 

used here, is taken to mean the calculation of lift (or, more properly,. 
normal force) coefficient and pitching-moment coefficient or aercdynamic 

center of pressure. Since the basic flow model considered is inTriscid, and 

since leading-edge suction is precluded by flow separation, the chordwise 

force is zero, and the lift and drag are simply the vertical and horizontal 

components of the normal force. 

PREVIOUS INVESTIGATIONS 

Experimental 

The aerodynamic behavior of swept wings has been a subject of consider- 

able interest for a number of years, and numerous experimental investiga- 

tions have been undertaken.. These investigations have sought not only to 
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tabulate aerodynamic coefficients but to explore in detail the flow field 
about the wing. Because of their inherent simplicity, delta wings repre- 

sent the planforms to which most attention has been devoted. 

Jasslion and Trilling (Ref. 1) have made detailed probe measurements 
in the flow field over delta wings. Bergerson and Porter (Ref. 2) use smoke 
traces and a light slit technique to locate vortex core positions on an 
aspect ratio one delta wing and some studies of the flow field downstream 
of the trailing edge are also included. Recently, Hummel (Ref. 3) reported 
on the use of oil traces, tuft grids and smoke pictures, including some 
studies on the effects of yaw. 

The basic flow pattern is illustrated by Figure 1. It will be noted 
that the details of the actual physical flow are somewhat more complicated 
(as pointed out, for example, by Ref. 2), and it is still unclear whether 
secondary flows are significant in determining performance. However, even 
for considerable yaw, the flow pattern is basically steady. At high angles 
of attack, an unstable phenomenon called "vortex bursting" occurs, in which 
the vortex field appears to decay to another state characterized by lower 
local rotational velocities but a larger extent of influence. This bursting 
phenomenon is not considered in the development presented herein. 

For wing-body combinations far less effort has been made. Under cer- 
tain flow conditions, the position of the vortex centers (or more accurately, 
centers of vorticity), which are low-pressure regions are visible due to 
moisture condensation, and no smoke or other visualization techniques are 

necessary. A considerable amount of work of this type has been conducted by 

Ames Research Center in connection with the tests of Reference 4 on a double 
delta wing-body combination. These studies indicate that more than one dis- 

tinct vortex system can be formed if there are abrupt changes in wing leading- 
edge sweep. Wentz and McMahon (Ref. 5) have taken very detailed velocity 

probe measurements of the flow field around a double delta wing-body combina- 
tion. It should be noted that Wentz' measurements do not reveal the dual 

vortex system illustrated by the Ames photos. 

Most of the investigations referenced above also present some data on 
aerodynamic coefficients. In addition, LaVallee (Ref. 6) has taken data 

on sharp-edged delta wings, and Bartlett and Vidal (Ref. 7) present detailed 
lift and moment data for low aspect ratio wings with and without leading- 
edge separation. 
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Theoretical 

The essence of classical aerodynamic theory is embodied in efforts to 

solve the linearized potential equation 

(1 - MO*) Qxx + Gyy + Gzz = 0 

where $I is the perturbation velocity potential and MO is the free-stream 

Mach number. If an aircraft is sufficiently slender, then the axial varia- 
tion of axial velocity is much smaller than the lateral variations of lateral 

velocities; that is, 

%x << Gyy and Qzz 

and Equation (1) may be simplified to 

6 yy + @zz = O (2) 

Hence, obtaining a mathematical description of the flow pattern reduces to 
finding solutions to Laplace's equation, satisfying appropriate boundary 
conditions in the y-z or crossflow plane. Any dependence of the resulting 
solution on axial shape variations is permitted to enter only through the 

boundary conditions. 

The assumptions leading to Equation (2), and the application of these 
assumptions to a prediction of aerodynamic characteristics of a thin flat 

wing were described by Jones (Ref. 8). Since the flow field, under the 

slenderness assumption, can be described by a succession of two-dimensional 

flow fields, the concept of the complex potential and mapping techniques 

can be applied to generalize the approach of Jones. This generalization was 

first presented by Spreiter (Ref. 9), and was subsequently extended to in- 
clude very general classes of wings and wing-body combinations (see Ref. 10). 

Attached flow (low a).- Even if one can neglect the effects of separa- 

tion and vorticity on the aerodynamic characteristics of aircraft, slender- 
body theory still exhibits a serious defect; it yields correct results only 

for vanishing aspect ratios. For thin flat-plate wings, slender-body theory 

predicts a linear lift curve having a slope, CL 9 Of .rrA/2. Figure 2a 
a 

shows a comparison of the predicted values with experimental results for 
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flat-plate delta wings as reported by Lange/Wacke, Reference 11, and by 
Bartlett and Vidal, Reference 7. It can be seen that even at an aspect 

ratio of unity, slender-body theory overpredicts the linear (attached-flow) 
lift by 30 percent, and the discrepancy rapidly becomes greater as the aspect 
ratio increases. Basically, this difference occurs because, for the flow 
field around a finite-aspect-ratio wing, neglecting accelerations in th'e 

stream direction is simply not justified; that is, the flow field is truly 
three-dimensional except for vanishing aspect ratios. 

For high-aspect-ratio wings, the classical lifting-line theory of 
Prandtl (Ref. 12) is quite successful in predicting lift up to the stall; 
however, the restrictions on wing shape are quite severe and no information 
regarding center of pressure is obtained. A generalization of lifting-line 
theory is the lifting-surface theory, which escapes some of the restrictions 
but results in considerable computational complexity. Two well-known exam- 
ples of lifting-surface theory are the work of Multhopp and Truckenbrodt, 
References 13 and 14. 

When the aircraft under consideration is reasonably slender, a consider- 
able simplification can be effected in lifting-surface theory by incorpora- 
ting certain features of slender-body theory. Two quite similar approaches 
to this "not-so-slender-body" theory are presented by Lomax and Sluder, 

Reference 15, and by Lawrence, Reference 16. Lift curve slope predictions 
from both of these methods are also shown in Figure 2. Either method is 
quite successful at predicting attached-flow lift for delta wings, for'aspect 

ratios up to 3 or 4. 

Separated flow (hiqh a).- A number of theories have actually been 
developed for calculating the‘total lift on slender, flat-plate wings exhib- 
iting leading-edge separation. However, most of these have been restricted 

to conical flows and are not readily extended to either arbitrary planforms 
or wing-body combinations. 

The theory of Brown and Michael (Ref. 17) contains the essential ele- 
ments of a number of recent papers (e.g., Refs. 18, 19, and 20). The 
analysis is confined to triangular wings of low aspect ratio and makes use 
of the slender-body approximation discussed on the previous page. With this 
approximation, the total lift is given by (see Ref. 17) 

L = -pv r @ W (3) 
C 
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where the contour c encloses the trailing-edge cross section of the wing 

and the vortex sheets. Thus, the lift is linear in the potential @ and 
is therefore composed of two parts; one being the usual slender-body lift 

(which is linear in a), and one being the additional lift due to the poten- 

tial associated with the separated vortices. 

The model proposed by Brown and Michael is illustrated in the following 

sketch. 

It is assumed that all of the trailing vorticity above the wing is concen- 

trated in two fully rolled-up vortices whose strengths vary linearly in the 
chordwise direction. The contribution of the feeding vortex sheets (between 
the wing leading-edges and the rolled-up vortices) to the complex potential 
in the cross-flow plane is neglected. However, since the feeding vortices 

shed from the leading edge lie almost normal to the free stream (rather than 
along the streamlines) they must sustain a force. The condition that the 
shed vortex system be force-free everywhere is therefore approximated by 
requiring that the net force on the entire vortex system be zero. In this 
manner, with the Kutta condition imposed at the leading edges, Brown and 

Michael proceed to solve for the vortex strengths r and the vortex posi- 
tions, and thereby calculate the total lift and drag, as well as the span- 
wise load distribution. 

The lift-curve calculated by the above method agrees well with experi- 

ment only for extremely low aspect ratios (small apex angles) and the pre- 

dicted high peaks in the pressure distribution are not realized because the 
streamwise vorticity is actually distributed throughout the feeding sheet 

rather than being concentrated in two discrete vortices. 
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A somewhat more general treatment of the slender triangular wing with 
leading-edge separation has been developed by Mangler and Smith (Ref. 21) 
who consider a more realistic shape of the vortex sheets and calculate the 
lateral distribution of streamwise circulation within the sheet, accounting 
approximately for the requirement of no force on the sheet and no flow 

through it (see sketch). 

However, the flow is still assumed to be conical (resulting in a center of 
pressure at the two-thirds root chord position), and the severe limitation 
on aspect ratio remains. 

More recently, two papers have appeared which attempt to treat swept- 
back wings of arbitrary aspect ratio and general planform with leading-edge 
separation. The first of these, by Gersten (Ref. 22) assumes that vortices 
are shed over the entire wing surface at an angle of 42 above the chord 
plane. This is the angle predicted by the theory of Bollay (Ref. 23) for 
rectangular wings of vanishing aspect ratio. By satisfying the boundary 
condition of no flow through the surface at a number of points along the 
span, Gersten solves for the loading distribution on a number of lifting 
lines representing the wing surface. In this manner, one can calculate the 
total normal force and pitching moment. Gersten's model effectively assumes 
that steady flow separation occurs over the entire upper surface of the 
wing. Although this assumption is difficult to justify, the results do show 
reasonably good agreement with experimental data for rectangular and delta 
wings of aspect ratios between about 0.5 and 3.0. 

The two major objections to Gersten's theory are: (1) the assumption 
of separation over the entire upper surface, and (2) the assumption that the 
shedding angle is constant at a/2. Both of these objections are overcome 
in the theory of Reference 24 in which separation is permitted only at the 



wing edges, and the angle of shedding is calculated by requiring that the 

separation vortices lie along the local streamlines at the wing edges. 
Unfortunately, the calculated shedding angles do not agree well with experi- 

ment, and agreement with experiment on the normal force and center of pres- 

sure are obtained only by selecting the shedding angle which is a function 
of the aspect ratio, angle of attack, and planform. It should be mentioned 
that here again, even for high aspect ratios, the lift is found to be com- 

posed of a linear (attached-flow) solution and an additive nonlinear 
(separated-flow) solution. 

Evidently, a major difficulty in the two mathematical treatments dis- 

cussed above lies in the failure to allow the vortex sheets to roll up after 
they leave the wing. To be sure, this omission is intentional for reasons 
of mathematical tractability. However, it is known from experimental obser- 

vations that the vortex sheets roll up quite rapidly, particularly for the 

lower aspect ratios. The low-aspect-ratio theories of Brown and Michael and 

Mangler and Smith attempt to account for this phenomenon by making simpli- 

fying assumptions regarding the nature of the rolled-up vortex sheets. 

It would seem, then, that what is needed is a theoretical model which 

permits the vortex sheets to roll up freely without the restrictions of con- 

centrated vortex cores or conical flows. This is the aim of the present 

theoretical analysis. 

APPROACH TO THE PROBLEM 

The preceding discussion indicates that there are two distinct facets 

to the prediction of the aerodynamic characteristics of low-aspect-ratio 

aircraft experiencing leading-edge separation; the prediction of the linear 

(attached-flow) lift characteristics, and the nonlinear (separated-flow) 

contribution to the resultant aerodynamic forces. The approach taken in the 

present work is to assume that these two contributions, linear lift and 

separated lift, are separable and additive. That is, we presume that 

( CL) = (CL) + (CL) (4) 
total att S 

The idea of an additive component of lift, at finite angles of attack, 

to account for lift-curve nonlinearities was perhaps first presented by Betz 
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(Ref. 25), who introduced the concept of the "cross-flow drag coefficient." 

Within the assumptions of slender-body theory, for any number of discrete 
vortices in the flow field, Equation (4) results from a rigorous derivation 
of the body forces on a general aircraft (see Ref. 26). 

The attached-flow lift characteristics are predicted using the integral 
equation method of Lawrence presented in References 16 and 27. A descrip- 

tion of the method is given in the following section; the numerical technique 

for solving the integral equation is outlined in Appendix A. 

The flow-field vorticity associated with separation is represented by 
a number of discrete line vortices using the concepts of slender-body theory 
to calculate the resultant forces. The flow model is described on page 13, 
and methods for determining the rate of addition (shedding) of vorticity to 

the flow field are discussed on pages 17 through 28. 

THEORETICAL ANALYSIS 

Attached Flow 

The technique presented here for the linear (attached-flow) lifting 
characteristics of low-aspect-ratio wings is that due to Lawrence, Refer- 
ence 16. The present discussion will be restricted to the wing-alone case, 
since the extension to wing-body combinations (presented by Lawrence in 
Ref. 27) results in only very minor changes in the computational procedure. 
It should be noted, however, that the method is not valid where the wing 
span is decreasing with x. 

At low Mach numbers, the linearized potential equation (Eq. (1)) reduces 
to Laplace's equation in three dimensions. We are interested in a solution 
to Laplace's equation for the steady motion of a thin airfoil, lying in the 
z = 0 plane with local angle of attack a. The origin of the coordinate 
system is at the semi-root chord, as shown in the following sketch. 



A solution to Laplace's equation can be written as (Ref. 28) 

+ ( F'( 
2 r*+z ) 

Ix; + (x-4) *] rz 
il 

(5) 

where 
2 r = (x-E.1 * + (y-q) * + z* 

and the quantity u(fj,,$ is proportional to the discontinuity in the x com- 

ponent of the perturbation velocity across the x-y plane. In linear theory, 

this can be related to the wing loading through Bernoulli's equation as 

J(X,Y) = 2pV2u(x,y) (6) 

where at&Y) is the lift per unit area. 

For a flat wing in steady flow, oz = -a on the wing, and u=o every- 

where else since the fluid cannot support a pressure difference. Hence, for 
points on the wing surface, we have the integral equation 
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where the double integral is carried out over the wing surface S. The two- 
dimensional integral equation above can be reduced to a one-dimensional in- 
tegral equation by utilizing two successive steps. First, the lift per unit 
chord can be regarded as the independent variable; thus, let 

S 

g’(x) = 

Jf 

dq u(x,q) (8) 
-s 

where s is the local semi-span. This function is related to the lift per 
unit chord by 

dL - = 2pV2g' (x) 
3X (9) 

Second, the explicit appearance of the variable y in Equation (7) can be 
eliminated by multiplying by an appropriate weighting factor and, with cer- 
tain approximations, integrating on y across the span. 

It should be noted that the use of Equation (8) to eliminate one inte- 
gration means that no information regarding spanwise loading can be obtained. 
The choice of the weighting factor and the subsequent approximations repre- 
sent the essence of Lawrence's contribution. 

The weighting factor which Lawrence used is m, the spanwise 
distribution of surface potential which results from Jones' theory. Multi- 
plying Equation (7) by this factor and integrating on y yields 

S c/2 s S 

/ 

o-d,=++ JJ dq u(4,q) . )I* l 1 Y-rl -s -c/2 -s J ( >[ 
-s 

+ d(x-4) * + (y-d 2 x-4 I 
If we now denote 

k(x) = 
/ 
'avdy 

-S 

( 10) 

(11) 

we find for a flat wing (a = constant), 



--..---- --.---.. -.-. .---.- -- 
l 

k(x) =+s* (12) 

The quantity k(x) is proportional to the lift of the section of the air- 

foil lying ahead of the station - - x, which is given by slender-body theory 

(see Ref. 8 or Ref. 10). For example, at the trailing edge of a delta wing, 

k(x) = > (CL) (13) 
SB 

where S r is the wing area and 

(CL) = s Aa (14) 
SB 

the slender-body lift coefficient. 

For sufficiently low aspect ratios, the quantity (x-4) * + (y-q) 
2 

can be approximated by Y/(x-c, * + s* . Utilizing this approximation in 

Equation (lo), one obtains, after some manipulations 

c/2 - 

k(x) = $ g(x) + $ de g'(e) 1 + '(x-')2 t '* x-4 

where 

s’(x) = & ~cx,1 - 

Equation (15) can be solved numerically for g(x), and 
ficients are obtained from the expressions 

cL = $ g(x) 
r TE 

and 
C/2 

CM = 
i 

cL cL & dx - p (cr - 
r '1: 

-c/2 

(15) 

the aerodynamic coef- 

(16) 

Cl) (17) 

where 1, is a reference length. 
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The numerical technique used to solve Equation (15) is, with minor modi- 

fications, that presented by Lawrence in Reference 16, and is presented in 

detail in Appendix B. 

The success of the Lawrence method in predicting the linear lift charac- 
teristics of delta wings is well illustrated by Figure 2(a). Further cbm- 
parisons are presented in Reference 15, and the computed attached-flow normal 
force and center of pressure for delta wings are shown in Figure 2(b). 

The extension to include, approximately, the effect of a circular body 
of constant radius was made by Lawrence in Reference 27. For a circular 
body-planar midwing combination, the resulting integral equation is identical 
in form to Equation (15). However, the local semispan s under the radical 
in Equation (15) must be replaced by the exposed semispan, s - a, and, in 
place of Equation (12) we have 

k(x) =;cs* c-g* ( 18) 

Separated Flow 

For reasons of mathematical simplicity, the theoretical analysis of the 
lift due to separation will be restricted to small aspect ratios. This will 
permit the use of slender-body theory with all of the advantages of conformal 
mapping. That is, for calculating the flow field associated with the sepa- 
rated vortices, we shall assume that the flow is two-dimensional in planes 
normal to the plane of the wing. We shall further assume that separation 
occurs only along the wing leading edge. Body vortices are not considered. 

Discrete vortex model.- In order to calculate the shape and strength 
of the vortex sheet shed from the wing leading edge, we shall represent the 
sheet by a finite number of discrete singularities representing vortex line 
filaments. We shall assume that a pair of filaments is shed at each of a 

number of chordwise positions just outside the wing leading edge, as shown 
in the following sketch. 
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The strengths and positions of these vortices are to be determined at the 

instant of shedding by requiring that we satisfy the Kutta condition each 
time a new vortex is shed. The shed vortex will then be treated as a free 
vortex of constant strength whose subsequent positions will be computed 
step-by-step from the local induced velocities at the vortex. 

Since the Kutta condition insures that the flow leaves the wing edge 

tangentially, it will be assumed that each discrete vortex lies in the plane 
of the wing at the instant of shedding. Hence, the initial position of each 
vortex at the instant of shedding can be described by a single variable 6, 

the lateral distance from the leading edge (side edge) of the wing to the 

vortex location. 

We therefore have two unknowns at each shedding location (ri and Si), 
and one equation given by the Kutta condition of finite velocity at the side 

edge. The remaining equation must be supplied by a determination of the 
shedding rate. 

Satisfyinq the Kutta condition.- The Kutta condition requires that the 

velocity at the side edge of the wing remain finite. Hence, if we denote 
the complex potential in the cross-flow plane by W, we require that 

dW dn -- 
dcr d< + O" at t: = s 

where 

<=y+iz 

(19) 

and s is the local wing semispan. The transformation of the wing-body 

cross section to a circle of radius r. (see sketch), is given by Refer- 

ence 10. 
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I 

where 

<-plane 0 plane 

1 2 
r =- 

0 2 
( I 

s+$ 

(20) 

(21) 

Thus, since the derivative of the transformation do/d< is singular at 

P = SY and since (s=r 0 at <=s, we can express the Kutta condition of 

Equation (19) in the alternate form 

dW = 0 at 0 = r 
do 0 (22) 

In other words, the Kutta condition is satisfied by requiring a stagnation 

point in the transformed plane at u = ro. For the present problem, with 

n free vortices shed from each side edge (see sketch), the complex poten- 
tial can be expressed in the form (Ref. 26) 

. . 
c c 3 . 3 . 

+ 
-s S 

t; plane 

c . l 

c 

3 
. 

+ 

3 

. 

0 plane 
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W(c) = B an <(a) - iVa 

(23) 

The first term represents the contribution of the source term for a growing 

body radius, the second represents the contribution of the cross-flow velocity 
at infinity, and the third represents the contribution of the discrete 

vortices and their images. We can now perform the operation indicated in 
Equation (22) by differentiating Equation (23) with respect to C, setting 
u=r 

0’ 
and equating the resulting expression to zero. The resulting equa- 

tion is 

u. 5. 1 
+ 

1 
= 2 2 -2 27iVa (24) 

-r 0. -r 
0 1 0 

It is noted that the contribution of the source term vanishes at u=r 
0’ 

This is expected, since its velocity contribution in the physical plane is 

finite. This, then, is the Kutta condition to be satisfied each time a new 

vortex pair is introduced. Further, since the Kutta condition insures that 
the flow leaves the wing edge tangentially, we shall assume that the nth 
vortex pair lies in the plane of the wing at the instant of shedding. Hence, 

U n is real, so that an = an, and Equation (24) becomes 

Finally, cn is related to the lateral distance 6 from the wing edge by 

the transformation Equation (20). Thus, 

1 2 
.- =- 
'. 'n 2 s+6+A (26) 
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Therefore, Equation (25) furnishes one of the two necessary equations to 
solve for the two unknowns r n and 6 at a given chordwise station. The 
second equation is obtained from the shedding rate, for which two methods 
will be presented herein. In the first, or theoretica. method, the shedding 

rate is determined directly from the lateral velocity at the edge of the wing. 
This velocity is used to calculate the lateral growth of a flat vortex sheet 
in the plane of the wing, whose strength is calculated to satisfy the Kutta 

condition. This sheet is then replaced by a single vortex of the same 
strength which is also placed to satisfy the Kutta condition. 

In the second, or semi-empirical method, it will be assumed that the 

local shedding rate depends only upon the local sweep angle of the wing 
leading edge and the local cross-flow velocity. In particular, it is assumed 

that the wing in the presence of the body sheds at a rate corresponding to 
that of the wing alone at a higher angle of attack. The shedding rates are 

then obtained from delta-wing data by assuming that dr/dx = constant and 

varying dr/dx parametrically until the calculated lift and the experimen- 
tal lift agree. 

Both of the above methods for determining the shedding rate will be 
discussed in the following sections. 

DETERMINATION OF THE SHEDDING BATE 

Water Tank Studies 

In order to study vortex positions experimentally and to attempt an 
experimental determination of leading-edge shedding rates, models of several 
delta and double-delta wings and wing-body combinations were fabricated for 
testing in the Vidya water tank. The wings were thin (0.090" thick) flat 
plates of 8 inch span with sharp leading edges (beveled on both surfaces), 
and the body was a body of revolution. Some of the models are shown in Fig- 
ure 3. The models were tested by driving them vertically into the water 
by means of a motor-driven rack and gear arrangement, as shown in Figure 4. 

The vortex sheets were made visible by applying white poster paint 
along the wing leading edges or at selected spots along the leading edges 
and over the body nose. Motion pictures of the flow patterns were then 
taken through a glass plate flush with the surface while the model traveled 
through the water. Enlargements of selected frames are shown in Figure 5. 



One of the purposes of the preliminary water-tank studies was to deter- 

mine the approximate sweep angles for which the flow becomes unsteady. That 
is, since a sharp-edged rectangular wing will shed a periodic wake from the 

leading edge (zero sweep) and a steady rolled-up vortex sheet from the side 

edges (90' sweep), there must be some minimum sweep angle for which the flow 
remains steady. It can be seen from Figure 5 that the rear portion of a 
double-delta wing produced periodic shedding for a 25' sweep and steady 

shedding for a 45' sweep. Since the configurations to be studied herein 
(both the double-delta and the FSD planform) have more than 45' sweep, it 
was concluded that a steady-flow analysis would be appropriate, so long as 
the aspect ratios treated remained below about 3. 

It can be seen from Figure 5 that for 45' sweep of the rear portion of 
the double-delta wing, the leading edges appear to shed continuously and 

form a single pair of well-defined vortex cores which are nearly conical 
ahead of the wing break and curve outward thereafter. Figure 5 indicates 
that a second vortex filament may be formed at the wing break for certain 
sweep angles, as observed in the Ames 7- by lo-foot wind tunnel. For 25' 
sweep at certain angles of attack, the vortex cores become poorly defined 

aft of the wing break, as the vorticity shed from the rear portion is spread. 

out in the chordwise direction as unsteady shedding is approached. 

In order to gain some insight into the magnitude and distribution of 

shedding velocities and vorticity along the wing, some flat-plate delta 

wing models were made of lucite, so that short tufts mounted on the upper 
and lower surfaces of the wing leading edges could be observed simultaneously. 

For this purpose, it was necessary to take pictures nearly normal to the 

plane of the wing. This required a vertical window in the tank, as shown 

in Figure 4. 

The theoretical basis for the experimental determination of the shedding 

velocity lies in the two-dimensional flow assumption of slender-body theory. 
The lateral velocity of the sheet at the wing leading edge is then given by 

the average lateral velocity immediately below and above the vortex sheet. 
These velocities, in turn, can be obtained directly from the directions of 

short tufts mounted on the lower and upper surfaces of the wing leading 
edges (see sketch). 



Thus 

VI + vu v. = 1 2 

and, for small angles of the tufts relative to the free stream, 

v& = v*j 

V 
U = vu 

so that 

v. =- 1 ; (?t + *u) I 

(27) 

(281 

(29) 

Furthermore, the vorticity being shed at any point along the leading edge 

is given by 

The shedding rate is then determined from the relation 

dl- dl- -=- dt dx * V = Y * vi 

(30) 
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or 

Hence, the shedding rate itself could be determined directly if accurate 

measurements could be made of the local flow angles above and below the 

wing leading edge. 

A number of attempts were made to determine the shedding rate experi- 
mentally in the Vidya water tank. For this purpose, a horizontally-mounted 
camera was used to look through the tank with the aid of a remote flash bulb 
located above the water surface. Short tufts of various materials and 
lengths were glued or taped to the upper and lower surfaces of the wing, but 
visual observations indicated that the tufts were not following the local 

flow directions above and below the vortex sheet. Dye streaks were also 
tried, but here the streamline curvature prevented accurate angle determi- 
nations at the leading edge. For these reasons, attempts to determine the 
leading-edge shedding rates experimentally were unsuccessful. 

Theoretical Method 

Since the shedding rate is the rate at which vorticity is fed into the 

vortex sheet at the leading edge, and since the portion of that sheet im- 

mediately adjacent to the wing has a large influence in satisfying the 

Kutta condition, it seems appropriate to treat each new amount of vorticity 

introduced as a continuous sheet rather than a discrete vortex. This is 

quite feasible, since the sheet leaves the wing tangentially and, therefore, 

we can treat the entire vortex system as made up of (1) a number of discrete 

vortices (those previously shed), and (2) a flat vortex sheet extending from 

each wing panel (those vortices being shed), as shown in the sketch. 

Once the length of the sheet AS and its vorticity have been determined, 

we can then replace the sheet by a single dicrete vortex of the same total 

strength, which is again placed to satisfy the Kutta condition. We can then 
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proceed to calculate the subsequent positions until another sheet segment 
is shed. The shedding intervals, of course, are arbitrary, and the model 
should improve as the size of the intervals is decreased. For the present 
problem, with n-l free vortices and a flat sheet shed from each side edge 
(see sketch), the complex potential can be expressed in the form (Ref. 26) 

C . 3 . ri 
c . 3 . 

+k -16j. I- 

W(P) = Bin<(a) - 
2 r 

iVo. 0 ( 1 o-- - 
@ 

i 
27T 

n-1 

c 
ri Ln 

i=1 

oi=ro+6i 

i 
-2% 

i 
Y dy .h 

oi=r 
0 

(32) 

where y is the vorticity (circulation per unit length) of the flat sheet. 
The first term represents the contribution of the source term for a growing 
body radius, the second represents the contribution of the cross-flow 
velocity at infinity, the third represents the contribution of the discrete 
(previously shed) vortices and their images, and the last represents the 
contribution of the (newly shed) flat sheet and its image system. At this 
point, we need the inverse transformation of the wing-body cross-section to 
the circle; that is, (see sketch): 
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/: plane 5 plane 

where 

ro=$c+f) 

On the real axis we have [ = y and differentiation with respect to 

yields 

dy = + dai 

(33) 

u. 
1 

(34) 

Hence, by differentiating under the integral sign in Equation (32) and noting 

that oi = ai on the real axis, we find that the Kutta condition of Equa- 
tion (22) can be expressed in the form 

0 
+ 1 

2 
0 

0.' 
1 

+- + J-f+ 2 

+- - 4a2 
I 

= 27Tva (35) 
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If we now assume that y is constant over the short sheet segment at 
the instant of shedding, then the integral can be evaluated analytically. 
In the case of a wing alone (a = 0), the expression in the bracket reduces 
to 2 and Equation (35) becomes 

u. 
1 

2 -r 
0 

2 + Gil roJ + 2y .h c+ 2) = 2-rrVa (36) 

In the case of a wing-body combination (a # 0), the integration in Equa- 
tion (35) yields (see Ref. 29) 

n-i 

u 

(5. 
ri 

1 
2 

i=l 0. -r 
0 

2+ Ti2': roJ + y .h (+2) 

F 2 -a 

a;l 2 2 r -a 
0 I 

4+ r2-2a2 r2 

r" 2ar!>A" I) 

z-z 2-rrVa (37) 

These, then, are the two alternate forms of the Kutta condition to be satis- 
fied for wings or wing-body combinations each time a vortex sheet segment 
of length 6i (in the transformed plane) is introduced. 

The length of the flat vortex sheet in the physical plane is obtained 
from the lateral velocity at the wing leading edge. That is, if the edge 
of the sheet moves outboard at a velocity vi which is induced by all the 
free vortices and their images, then the length of the sheet a distance Ax 
downstream is given by 

As = vi At = >& (38) 
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The induced velocity vi at the wing leading edge (the side edge) is ob- 
tained from the'complex potential by satisfying the Kutta condition and 

determining the (finite) limiting value of the local velocity as the wing 

edge is approached. This procedure is given in Appendix C, and the result- 
ing expression for vi is 

V. 
1 (3g) 

The length bi of the vortex sheet in the transformed plane is related 
to the length As in the physical plane through the transformation Equa- 

tion (20), so that 

r o+6i=$ 
2 2 

s+As+ a s + As + ) 1 - 4r02 (40) 

This expression must be substituted into the Kutta condition of Equation (36) 
or Equation (37) which is then to be solved for the strength y of the 
vortex sheet. 

Having determined the size and strength of the newly shed sheet segment, 
we can then replace that segment with a single vortex of the same total 

strength 

rn =y.As (41) 

and require that this single vortex be located at a distance 6 from the 
wing edge such that it, in turn, also satisfies the Kutta condition. This 
is done by applying Equation (25). One can then proceed to introduce sub- 
sequent vortices in the same manner, tracing the paths of each shed vortex 
by evaluating the vortex velocities at each chordwise station. The expres- 
sions for these velocities are developed in Appendix D. 

Within the assumptions of slender-body theory, the lift on a length Ax 

of the wing-body combination in the presence of n discrete vortices is 
given by the change of the quantity (Ref. 26) 
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(42) 

between x and x f Ax, where R refers to the real part of the square 
root. Similarly, for n-1 discrete vortices and a sheet of width As shed 
from the wing edges, the lift acting on a length Ax of the wing-body 
combination is 

s+As 

+ 2pv 
I 
S 

Y dy jc+$)2 - (j+$) 2 (43) 

and the total separation lift on the configuration back to the wing trailing 
edge is given by this quantity evaluated at the wing trailing edge, since 
the initial value at the aircraft nose is zero. For configurations which 
extend aft of the point of maximum span, the reader is cautioned regarding 
the application of slender-body theory. For wings alone or wing-body com- 
binations having cylindrical afterbodies, the attached flow lift contribution 
aft of the maximum span is zero. A correction to the attached-flow lift to 
account for the body boattail (a diminishing body radius) was presented by 
Adams and Sears in Reference 30. The separation lift must be calculated 
by continuing to follow the free vortices and calculating the above quantity. 
Furthermore, it must be borne in mind that an additional initially flat 
vortex sheet is shed from the wing trailing edge. This vortex sheet must 
also be allowed to roll up and should be included in the calculation. Such 
calculations were considered to be beyond the scope of the present investi- 
gation. Consequently, all of the calculations presented herein terminate 
at the last chordwise station at which the wing span is not decreasing. 
Finally, carrying out the integration indicated in Equation (43), we find 
that the total separated lift coefficient is given by 
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(s -I- Ad4 - sp + 2 
S2 

(s + As)~ + a* + (s + As)* - $ 

r 
- a2 eni 

(s + As)' - (S' + 5 ) (S -t AS)* + a4 + a2 - $ (5 + 5) ts L as)" 
Ic_~__ 

(44) 

I 1 (a' s2 
i 2 \- - ,2 > (s + As) = 

evaluated at the wing trailing edge. 

The separation pitching moment is calculated from 

C 

M= 
i 

AL(c 1 - x)dx (45) 
0 

where AL is given by Equation (43) and c1 is the distance from the wing 
apex or the wing-body juncture to the center of moments. 

For the case of a wing alone (a = 0), it can be shown that Equation (44) 
reduces to 

CLs = $ y 2 R dci + cy - c+ $y+ g $ [(s + As)\/2s As + As2 
i=1 

- s 2 .f?n 
S (46) 

which is to be evaluated at the wing trailing edge. 

Semi-Empirical Method 

As was discussed in the section on Separated Flow, the basic separated 
flow model is restricted by the slender-body assumption to very low aspect 
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ratios. Therefore, in the absence of a three-dimensional theoretical method, 
an alternative semi-empirical method is presented here which can be used as 

a device to extend available delta-wing data to more qeneral planforms and 
thus provide a method for lift prediction. 

The basic assumption underlying the semi-empirical method is that the 
shedding rate depends only on the local sweep angle of the wing leading edge 
and on the local cross-flow velocity Vc; that is, 

dr --c-f 
dx (47) 

For delta wings, which have a constant sweep angle, this results in a con- 
stant shedding rate. 

Figure 6 presents a summary of the normal-force coefficients attributed 
to separated flow from References 6, 7, and 31. These curves are obtained 
by subtracting the attached flow CN (or CL) as given by the Lawrence 
method from the total measured normal-force coefficient. This figure illu- 
strates that, within experimental uncertainty, the normal force per unit 
area produced by flow separation is independent of wing aspect ratio. 

Utilizing the basic assumption represented by Equation (47), the shed- 
ding rates for various-aspect-ratio delta wings were varied systematically 

until the normal-force coefficients, calculated by the method given in the 
section on Separated Flow, matched the mean curve represented in Figure 6. 
The resulting shedding rates for this condition are summarized in Figure 7. 

The procedure for constructing a solution for arbitrary planform wings 
is as follows. At each integration step, the slope of the wing leading edge 
is obtained; this and the angle of attack are used in a two-way table look- 
up to obtain dr/dx. A vortex pair (and an image pair) of strengths 
dr/dx . Ax is placed in the flow field on the real axis so as to satisfy 
the Kutta condition. Then the induced velocities at the locations of all 
the vortices now in the field are calculated and the positions of the vortex 
system at the next chord station are calculated. The process is repeated 
until the trailing edge of the wing is reached, and the lift and moment are 
calculated. 

In the semi-empirical method, since all shed vortices are assumed to 
be discrete vortices (i.e., no vortex sheets), the calculation of lift is 
considerably simplified. Here, the expression of Equation (44) for the 
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separation lift coefficient reduces to (since Y = 0) 

n 

(48) 

and the pitching-moment coefficient is again given by Equation (45) which 

reduces to 

Cms = $-j(cl -x) f> Ry(& + E)' - c + $J dx 

0 
i=i 

(49) 

To illustrate the modification of the method to include the effects of 

the body, let us consider the two cases below. 

If the wing were not present for the case represented by the right-hand 

sketch, the velocity at the leading edges (y = +-s) would be Va. If the 

wing were not present in the case represented by the left-hand sketch, the 

velocity at y = +s would be - Va(1 + a2/s2) due to the presence of the 

body'. Therefore, when applying the semi-empirical method to a wing-body 

combination, the table look-up is performed at the equivalent angle of attack. 

2 
a e =a l+e 

( I S 

'This is obtained by differentiating the free stream part of the complex 
potential of Equation (32) with respect to o and replacing ci by s 
and r. by a. 
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NUMERICAL CALCULATIONS AND CONVERGENCE 

Numerical Procedure 

The procedure for calculating the attached-flow normal force and pitch- 
ing moment consists of a straightforward solution of the integral Equation 
(15) for the function g(x) using Equation (18) for the known function k(x). 

The details of this procedure are outlined in Appendix B and the normal 
force and pitching moment are then given by Equations (16) and (17), respec- 
tively. 

The procedure for calculating the separated-flow normal force and 
pitching moment is not quite so straightforward, since it involves the in- 
troduction and subsequent position-following of n pairs of free vortices 
shed from the wing leading edge. Two alternative techniques for calculating 

the separated-flow normal force distribution have been presented herein. 
The detailed procedures for these two methods are described below, and a 
detailed description of the computer program is given in Appendix E. 

Theoretical method.- (1) Select the number of vortices to be carried in 
the calculation. This point is discussed, with regard to convergence, under 
the section, Convergence with Number of Vortices, and estimates of the com- 
puting time are given in Appendix E. 

(2) Assume for first vortex sheet segment at x = Ax that vi = Va/2. 

(3) Calculate width of sheet segment from As = (vi/V)Ax where 
Ax = c/N, and N is the number of vortices to be introduced. 

(4) Calculate width of sheet 6i in the o plane from Equation (40). 

(5) Calculate the strength of the sheet segment from the Kutta con- 
dition by solving Equation (37) for y. (Use Eq. (36) if a = 0.) 

(6) Calculate strength of discrete shed vortex to replace the sheet 

by r =y. As. 

(7) Determine position on of this vortex in the transformed plane 
by applying the Kutta condition in the form of Equation (25). 

(8) Determine the lateral distance 6 from the vortex to the wing 
edge in the physical P, plane by applying the transformation Equation (33) 
and setting < = s + 6 and o=cl n' 
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(9) Calculate the v and w velocity components of the shed vortex 

pair from Equation (D-8) of Appendix D. 

(10) Calculate new lateral positions of shed vortices at next chordwise 

station by integrating Equation (D-8) over the interval Ax. 

(11) Calculate shedding velocity at next station from Equation (39). 

(12) Repeat steps 3 through 5. 

(13) Calculate separation normal force on segment of length Ax by 

applying Equation (43) (see Eq. (44) for integration). 

(14) Repeat steps 6 through 10 until trailing edge is reached. Note 
that method is not valid where the wing span is decreasing. 

(15) Calculate separated pitching moment from Equations (45) and (43). 

Semi-empirical method.- (1) Select the number of vortices to be carried 

in the calculation. See the following page for convergence requirements and 

Appendix E for estimates of computing time. 

(2) For first aircraft segment of length Ax, evaluate leading-edge 
slope ds/dx and look up shedding rate for that slope using the equivalent 

angle of attack. 
2 

a e =a l+% 
( 1 S 

(3) Calculate strength of shed vortex pair from 

(4) Apply steps 7 through 10 of the Theoretical Method. 

(5) Calculate separation normal force on segment of length & by 
applying Equation (43) with y = 0, carrying the summation over n rather 

than n-1. 

(6) Repeat steps 2 through 4 until trailing edge is reached. Here 

again, note that method is not valid where the wing span is decreasing. 

(7) Calculate the separation normal-force and pitching-moment coeffi- 

cients by applying Equations (48) and (49). 
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Convergence with Number of Vortices 

The development in the section on separated flow indicates that the 
determination of the flow field consists of following the positions of a 
set of free vortices as they progress back along the wing chord. Regard- 
less of the method of determining the shedding rate, this position tracing 
consists of solving a set of simultaneous differential equations. The 
number of equations in this set varies from two2, as the first vortex pair 
is introduced, totwice the number of vortices, 2n, at the trailing edge of 
the wing. 

The solution of the equation is effected with a fourth-order Runge- 

Kutta numerical integration technique (the Gill variation outlined in Ref. 
32) . For the present problem, this method has the advantage of ease of 
starting; it has the disadvantage of requiring an evaluation of the differ- 
ential equations at axial positions intermediate to the integration interval. 
This difficulty is amplified for the flow model used here, since the method 
of placing vortices satisfies the Kutta condition only at discrete chord 
stations. At chord stations intermediate to the introduction of vortices, 
the wing leading edge is a singularity in the flow field and the evaluation 
of induced velocities near the singularity can create numerical difficulties. 
This problem was alleviated by requiring the chord increment, Ax, used to 
numerically integrate the differential equations to be equal to the chord 
increment at which vortices are introduced. 

As the number of vortices introduced becomes larger and larger, the 
degree to which the discrete vortex model approximates a continuous sheet 
of vorticity should become better; that is, the method should converge with 
increasing number of vortices. However, when using numerical techniques, a 
demonstration of convergence is all that can be obtained, since it is possi- 
ble that round-off and truncation errors will either mask or produce changes 
in computed results. 

The approach to convergence is a function of both aspect ratio and 
angle of attack. In the range of interest in the present program, conver- 
gence of the theoretical method is most troublesome at high aspect ratios 
and low angles of attack. (At very low angles of attack, of course, linear 

2T~o equations are required to determine the y and z coordinates of the 
vortices. Because of symmetry, only two are required even though a pair 
of vortices is involved. 
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theory suffices.) A convergence demonstration was conducted for a flat- 
plate delta wing of aspect ratio 2 at 10' angle of attack, since this case 

appeared to be converging at the slowest rate. Figure 8 presents a plot 
of the separated-flow lift coefficient as a function of number of vortices 
for this case. The convergence of the method is less rapid than might be 

desired, but it does appear to converge at somewhere around 80 vortices. 

Fortunately, convergence is much more rapid for smaller aspect ratios. For 
comparison, Figure 8 also shows the approach to convergence of the separated- 
flow lift for aspect ratio 0.5 and aspect ratio 1.0 at 10' angle of attack. 
Although it is difficult to make rigorous conclusions from the limited 

number of cases run, a rough convergence rule would be 

n = 30 + 30A (51) 

where n is the number of vortices required for convergence, and A is the 
aspect ratio. Usually, the value of n given by Equation (51) can be re- 
duced by about 15 percent if answers within 10 percent of final values are 

acceptable. Equation (51) should be applied only for cases where 

0.5 < A < 2.0. 

If one is to use experimentally-determined shedding rates in a calcu- 
lative numerical procedure, it is essential that the procedure be a conver- 
gent one and that a sufficient number of vortices be used to insure con- 

sistent satisfactory results. Figure 9 presents the variation of separated 
flow normal-force coefficient with number of vortices for an aspect ratio 2 

delta wing at 15' angle of attack, as calculated by the semi-empirical 

method. As indicated, the constant shedding-rate model appears to converge 
at somewhere around 100 vortices. However, for computational convenience, 
a smaller number of vortices was used, relying on an adjustment of apparent 

shedding rates to yield consistent numerical results. This was justified 
only by the fact that the adjustment was relatively small; that is, even if 

no adjustment was made, the resulting lift at the number of vortices used 
(24) was within 15 percent of the converged value (somewhere around 90 vor- 

tices), as seen from Figure 9. The shedding rates given in Figure 7 are 

based on a 24-vortex model. For the theoretical method, no adjustment can 

be made, and hence, the approach to convergence becomes much more critical 

from a computational standpoint. 
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RESULTS AND DISCUSSION 

As discussed in the section on the Approach to the Problem, the normal 
force and pitching moment are assumed herein to be made up of the sum of a 
linear (attached-flow) component and a nonlinear (separated-flow) component. 
The linear normal force and pitching moment are calculated by the method of 
Lawrence (described in the section on Attached Flow), and the nonlinear con- 
tribution may be calculated by either the theoretical method or the semi- 
empirical method. Calculations have been carried out by both techniques for 
flat-plate wings of several planforms and for two different plane wing-body 
configurations for which experimental data are available. The flat-plate 
wings selected include delta wings of aspect ratios 1.0, 1.5, and 2.0, and a 
gothic wing of aspect ratio 1.0, all with sharp leading edges. The wing-body 
combinations selected are the double delta configuration (A = 1.45) and the 
so-called "Ogee modified" F5D configuration (A = 1.70). The planforms for 
these wings and the gothic wing are shown in Figures 10, 11, and 12. 

Comparisons of the calculated and experimental values of normal force 
and center of pressure for flat-plate wings are presented in Figures 12, 13, 
and 14, and it can be seen that the semi-empirical technique yields better 
results in all cases. It should be noted that the theoretical results for 
the aspect-ratio-2 delta wing were not converged at 48 vortices and are there- 
fore not presented. Since the theories of Brown and Michael (Ref. 17) and of 
Mangler and Smith (Ref. 21) are restricted to conical flows, comparisons.with 
those theories are shown only for the delta wings. It can be seen from Fig- 
ure 13 that the present theory gives about the same results as that of Mangler 
and Smith and gives substantially better results than the theory of Brown and 
Michael. However, all of these theories overpredict the normal force at high 
angles of attack. It should be noted that the theories of Brown and Michael 
and of Mangler and Smith have been used here to calculate only the separated 
normal force; that is, the slender-body theory restriction has been relaxed 
somewhat by modifying the attached-flow lift by the method of Lawrence (Ref. 
16). Thus, the ordinate of the general curves presented in References 17 and 
21 (see Fig. 15) has been interpreted as giving the sum CNs + 5 ACX from 
which the separated normal force can be extracted. This is then added to the 
linear (attached-flow) normal force as given by Lawrence in order to obtain 
the total normal-force curves shown in Figure 13. This gives a more fair 
comparison with the methods presented herein than if the curves of References 
17 and 21 were taken as predictions of the total normal force for all aspect 
ratios. 
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It can be seen from Figures 12 and 13 that the agreement between the 
theoretical and experimental normal force becomes poorer as the angle of 

attack increases. Likewise, the convergence of the present theoretical 
method also deteriorates with increasing aspect ratio. This is not too sur- 
prising, since the theoretical method presented herein for calculating the 

separated normal force is based upon the assumption that the flow field is 
two-dimensional. The risk of such an assumption is clearly pointed up by 

comparing the predictions for the attached-flow lift as given by slender- 
body theory with those given by the modified, quasi-three-dimensional theory 
of Lawrence. It can be seen from Figure 2 that close agreement exists only 

for low aspect ratios. Consequently, one might suspect that the theoretical 
method of the present report is likewise restricted, as are the methods of 
References 17 and 21. 

The semi-empirical method presented herein is of course not restricted 
to very slender planforms, and agreement with experimental normal force is 

insured for delta wings. However, the lift distribution, and thus center 
of pressure, will depend on the resultant vortex pattern which develops. 

Hence, a check on the 'reasonableness" of the basic flow model is provided 
by a comparison of the computed center of pressure with experimental values. 
Figure 14 is a comparison of both CN and center of pressure for the semi- 
empirical method with the data of Bartlett and Vidal (Ref. 7) and Peckham 

(Ref. 31) for delta wings of aspect ratio 1.0, 1.5, and 2. The total normal 
force was obtained by adding the semi-empirical separated-flow normal force 

to the attached-flow normal force given in Figure 2(b). The agreement exhib- 

ited in Figure 14 is indeed encouraging. 

As mentioned previously, the experimental separation normal force (total 

normal force minus Lawrence normal force) for delta wings is essentially 

independent of aspect ratio up to aspect ratios of about 2. A comparison 

of this mean curve (taken from Fig. 6) with points calculated by the theo- 

retical method is shown in Figure 16, and the deterioration of convergence 

with aspect ratio is apparent. 

In the absence of a three-dimensional correction for the separated flow, 

it is interesting to simply apply the same correction as was found by the 
Lawrence method for the attached flow in any particular case. Let us assume 

that the ratio of the correct normal force to that predicted by slender-body 
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theory is the same for the separated-flow component as for the attached-flow 
.component. In that case, the total normal force is given by 

cN = (+j::> att&)total (52) 

It must be noted that the Lawrence method is not really applicable to the 
separated-flow problem, since it is based upon a linear relationship between 
local pressure and the velocity potential (see Ref. 16). The pressure due 
to the separated flow, however, contains quadratic terms which do not cancel. 
Therefore, Equation (52) must be regarded as a crude "correction technique" 
rather than a valid theoretical method. Nevertheless, calculations have been 
carried out for delta wings of aspect ratios 1.0 and 1.5, in which case 

Equation (52) can be written as 

(53) 

and the resulting curves are shown in Figure 17. It can be seen that con- 
siderable improvement results in the agreement with experiment. 

The calculated normal force and center of pressure for wing-body com- 
binations are compared with experimental data in Figures 18 and 19 and here 
again the empirical method yields superior results at the higher angles of 
attack. Also shown on Figure 18 is the theory of Smith (Ref. 33) which is 

an extension of the theory of Brown and Michael to general planforms. It 

can be seen that the present theory gives considerably better agreement with 
experiment for this case. 3 

As a further check on the present analysis, the vortex positions above 

a delta wing as determined by both the theoretical and empirical methods 
have been plotted in Figure 20, and the lateral center of gravity of the 
separated vortex system is compared with water-tank observations for a 
double-delta wing in Figure 21. The detailed shape of the vortex sheets as 
-__ ..- 
3For this calculation, the method of Reference 33 has been extended to wing- 

body combinations by conformal mapping. 
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predicted by the theoretical and semi-empirical m&hods are shown in Figures 
22 and 23, and it can be seen that the shape becomes quite unrealistic for 

large numbers of vortices (owing to the discrete vortex approximation), al- 

though the lateral center-of-gravity positions agree very well with experi- 

ment (Fig. 21). It is interesting to note that the center-of-gravity 

location is predicted more accurately by the theoretical method than by.the 

semi-empirical method, although for normal-force predictions the reverse is 

true. This would seem to indicate that the inaccuracy of the theoretical 

method lies in an overprediction of the shedding rate. It is further noted 

(Fig. 21) that the outboard trend of the lateral center of gravity with 

angle of attack is correctly predicted over the rearward portion of the 

double-delta wing by the present theory, while the theory of Smith (Ref. 33) 
predicts an inboard trend. It appears from Figures 20 and 21 that the 

lateral vortex positions are more accurately predicted by the semi-empirical 

method for the delta wing but not for the double-delta wing. All of this 

would seem to indicate that the theoretical method presented herein offers 

a reliable method for predicting the development of the vortex positions 

over general planforms, but tends to overpredict the shedding rate, particu- 

larly for aspect ratios above 1.0. 

Figure 24 shows two photographs taken in the Ames 7- by lo-foot wind 

tunnel which illustrate an interesting experimental phenomenon in the vortex. 
patterns for the double-delta configuration. In particular, it appears 

that a second vortex core is initiated at the break in the wing leading edge, 

and that the two cores interact in such a way as to produce the complex 

patterns shown in the photo. Such a phenomenon was clearly observed only 
for angles of attack of about 12' to 16'. Although the predicted vortex 
sheet shapes are very complex (see Fig. 25), no such phenomenon was evident 
in the vortex shapes calculated by the methods presented herein. On the 
other hand, the predicted center of gravity location for the entire vortex 

system from each wing panel seems to be in very reasonable agreement with 

experimental observations. The calculated lateral c.g. positions for the 
double delta configuration are presented in Figure 26, and it can be seen that 
a mean curve through the two visible traces of the photos in Figure 24 would 
come close to the predicted values. A mean curve cannot actually be drawn, 
however, since the strengths of the two visible vortex cores are unknown. 
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CONCLUSIONS 

A method has been developed for predicting the normal force and center 
of pressure on reasonably slender wings and wing-body combinations exhibit- 
ing flow separation along the wing leading edges. The method is applicable 
to general plane-wing-body configurations and predicts the shape and loca- 
tion of the vortex sheets above the wing as well as the resulting loadings 
on the airplane. The calculation of the linear (attached-flow) normal force 
and pitching moment is performed by the method of Lawrence (Ref. 27), and 
two alternative methods are presented for calculating the loadings due to 
separation. One is a purely theoretical method based on slender-body theory 
in which the shedding rate is calculated at each point. The other is a semi- 
empirical method based on delta-wing data in which the shedding rate is 
assumed to depend only upon angle of attack and leading-edge sweep. The 
mathematical model employed to represent the separated flow field involves 
the use of a large number of free vortices which are shed at the wing edges 
so as to satisfy the Kutta condition there, and their subsequent motions are 

calculated. The model exhibits many of the features of the physical flow 
with regard to shedding rate, rolling up of the vortex sheets, and lateral 
travel of the vortex centers of gravity. 

Calculations have been carried out by both the theoretical and semi- 
empirical techniques for several wing and wing-body configurations, and com- 
parisons have been made between the calculated and measured normal force, 
center of pressure, vortex-sheet shape, and vortex center of gravity. Based 
on these calculations, the following conclusions are drawn: 

( 1) Both the theoretical and semi-empirical methods appear to converge 

with respect to the number of discrete vortices shed. 

( 21 Convergence of the theoretical method apparently deteriorates with 
increasing aspect ratio. The number of shed vortices required for conver- 
gence is approximately given by n = 30 (l+A). 

(3) Convergence of the semi-empirical method appears to be considerably 
better. It was found that 24 vortices yielded satisfactory results for all 
cases calculated, provided the shedding rates used to match the delta wing 
data were also calculated using 24 vortices. 
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(4) Even the theoretical method yields results comparable with the 
conical-flow theory of Mangler and Smith for delta wings up to aspect ratios 
of 1.5 and is applicable to general planforms. 

(5) The semi-empirical method appears to give satisfactory predictions 
of both normal force and center of pressure for all of the wing and wing: 

body configurations calculated over the angle of attack range of interest. 

(6) The center of gravity positions of the vortex sheets as predicted 
by both the theoretical and semi-empirical techniques show good agreement 
(particularly the former) with observations made in the Vidya water tank. 

(7) The theoretical method overpredicts the normal force due to sepa- 

ration, particularly at high angles of attack and high aspect ratios. 

(8) It appears that the overprediction of the normal force due to sepa- 

ration stems from an overprediction of the shedding rate and is largely due 
to three-dimensional effects as is the case for the attached flow. An approxi- 
mate "correction technique" has been presented which gives considerable 

improvement in the results. 

Vidya Division, Itek Corporation 
Palo Alto, California 

June 30, 1966 



APPENDIX A 

LAWRENCE SLENDER APPROXIMATION TO THE 
LIFTING-SURFACE INTEGRAL EQUATION 

Equation (10) of the section on Attached Flow can be written as 

C S 

1 
k(x) = z 

I dE s'(4) 
-c 

+ v (x - 4) * + (y - q) 2 x-4 1 
Equation (A-l) can be written identically as 

C S 

1 
k(x) = z 

/ 
dE g’(4) 

/ 
-C -s 

+ I‘/( 
x- Cl2 + (Y - T-II2 - x - 4 1) 

L 

The first term in the 
the integration on y 

x-4 JJ 
braces in Equation (A-2) is independent 

to be carried out. It should be noted 

so long as -s i q< s! Hence, 

(A-1) 

(A-2) 

of Y enabling 
that' 

(A-3) 

'This can be demonstrated by interpreting the integral as a principal value. 
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k(x) = $ g' (4) l+- de 
(x - 4) 1 -c 

1 
+2-rr 

-c 

P 
(x - 4) 2 + (y 2 -n) - x-cl 

x-5 1 
(A-4) 

The remaining integral on y in Equation (A-4) can be carried out by multi- 

plying numerator and denominator by 

and utilizing the approximation 

(x - cl2 + (y - n)2 = (x - 4) 2 + s2 (A-5) 

Then Equation (A-4) reduces to 

k(x) = $ 
p [ 

s'(4) 1 + w-j dE + + j- g'(t) [l + ' (x ;>)--24; s2] de 
-c -c 

(A-6) 

But since 

[IL+&&]=2 for 41x 

= 0 for 4 2 x9 
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Equation (A-6) becomes 

C 

k(x) = + g(x) + $ 1 + ‘I( 
x- 4) 2 + s2 

(x - 4) 
dE 

-c 

which is the one-dimensional integral equation given by Lawrence. 

41 

(A-7) 



APPENDIX B 

DESCRIPTION OF COMPUTER PROGRAM FOR ATTACHED-FLOW 
LIFT PREDICTION 

A computer program was developed for calculating the aerodynamic lift 

distribtuion for low aspect ratio wing-body combinations, following the 

method of H. R. Lawrence as detailed in References 6 and 27. A brief descrip- 
tion of this FORTRAN IV computer program along with directions for its use 

are presented here. 

The mathematical problem posed in the method of Lawrence is the solu- 

tion of an integral equation of the following form: 

C 

k(x) = 4 g(x) + -+ / dEg'(4) 
C 

1+ ‘/( 412 + s2(x) 
x - (x - 4) I 

(B-l) 
-c 

in which x is the chordwise variable, k(x) and s (4 are known functions 
which can be expressed analytically in terms of the wing semispan and body 

radius, and g(x) is the unknown function related to the lift per unit 

chord. The method of solving this integral equation, recommended by Lawrence 

and followed in this program development was the method of collocation. This 
method involves expressing the solution as a truncated infinite series, sub- 
stituting this series form into Equation (B-l) and performing the indicated 

operations. The series chosen by Lawrence was 

N-1 

g(x) = (7 - 0) (A0 + Al) + (A r-1 - Ar+l) tsi; re) (B-2) 

-1 where 8 = cos x. Substituting Equation (B-2) into Equation (B-l) results 

in an equation relating the unknown series coefficients, A,, to the independ- 

ent variable x. 

This equation is then satisfied for specified values of x, using as 
many chord stations as there are unknown series coefficients, resulting in 

a set of simultaneous (and in this case, linear) equations in terms of the 

unknown series coefficients, which may be solved readily by established 

numerical techniques. 
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The organization of the computer program reflects a division of the 

effort into three tasks. 

(1) Subroutine LOFT is concerned with the configuration of the wing. 

Specification of the wing and body shapes is input via LOFT. In addition, 
LOFT evaluates the functions k(x) and s(x) at the points called for by 
the collocation solution. 

(2) Subroutine SMLSLV is used for solving the set of simultaneous 
linear equations resulting in the collocation solution. 

(3) The main program controls the operation of the subroutines, sets 
up the simultaneous equations to be solved, and prints the answers. 

The input to the program consists of a deck of cards which specify the 
wing and body dimensions and slopes at several chord stations, followed by 
one card with two numbers: n, the number of terms in the truncated series 
approximation, and m, the number of steps used in evaluating the integral 
in the above equation over the chord of the wing. The method used in evalu- 
ating this integral is the simple trapezoidal rule, as recommended by 
Lawrence and followed in this development. A more complicated and more 
accurate method (16-ordinate Gauss quadrature) was tried, but did not yield 
as satisfactory results as the trapezoidal rule with nearly the same interval 
size. (The nonuniform distribution of abscissae in the Gauss method was 
thought to be the cause of this anomalous behavior, as the collocation points 
were uniformly spaced.) 

The output from the program is labeled and consists of the following 
items: 

(1) The input data are listed for reference. 

(2) The coefficients, AI, of the series solution are presented. 

(3) The lift and moment coefficients, for unit angle of attack, are 
presented along with the corresponding center of pressure. 

(4) The distribution of the lift per unit chord (AC,/Ax) is indicated 
by listing local values of this quantity at each of the points of collocation. 

The detailed input data format is as follows: 

First Card 

Seventy-nine columns of comments for the user to identify and label the 

job. These are printed at the head of the listing of the input data. 
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Second Card 

Cal. 1 

Cal. 2-15 

Cal. 16-29 

Cal. 30-43 

Blank 

-&X*XXXXXXXE+YZ, reference area of the wing, SE, ft2 

+X.XXXXXXXE+YY, reference length for moments, jR, ft 

+X*XXXXXXXE+w, chord station of point about which 
moments are computed, ci, ft 

Cal. 44-57 +X*X=E+YY, forebody lift coefficient, CL-FB, 
dimensionless 

Cal. 58-71 +X*XXXXXXXE+YY, forebody moment coefficient, cMsFB, 

dimensionless 

Third and Followinq Cards 

Cal. 1 Blank 

Cal. 2-15 X*XXXXXXXE+V, chord station, x, in ft 

Cal. 16-29 X*DE+YY, wing semispan, s, in ft 

Cal. 30-43 +X.XXXXXXXE+uY, slope of wing semispan, ds/dx, 
dimensionless 

Cal. 44-57 

col. 58-71 

+X~xxXXXXXE+W, body radius, a, in ft 

+X*XXXXXXXE+YY, slope of body radius, da/dx, 
dimensionless 

Next Card 

Indicates that specification of wing-body configuration is terminated. 
A negative value of s is used to indicate this condition. Thus, 

this card need only have -1. in columns 16, 17, and 18. 

Last Card 

Cal. 1 

Col. 2-5 

Col. 6 

Cal. 7-10 

Blank 

KKKK, number of terms in series, n 

Blank 

KKKK, number of steps in trapezoid integration 

scheme, m 

44 



The input decks for several jobs may be stacked. The order of the 

cards in the group of "third and following" is critical. They must be in 

order of increasing chord station, x. The input deck for this program is 

compatible with the input requirements of the program for separated flow lift, 
except for the last card. Also, the separated flow lift program does not 

make use of the forebody lift and moment values of the second card. 
The time and output line requirements may be estimated from the 

following approximations: 

TIME < 1.5~10~~ mn minutes 

LINES < 2n + 30 

where 

n number of terms in series 

m number of steps in trapezoid rule 

Values of n = 12 and m= 23. have been found to give adequate 
accuracy. (The quantity m should be about twice as big as n, but m and 
n should be incommensurable.) 

The input deck for a sample case is listed below. The output from this 
case is reproduced on the following page. The remaining pages of this 
appendix contain a listing in FORTRAN IV of the three programs used for 
computing attached-flow lift from the method of Lawrence. 

Input for sample case: 

s 
4.39 
1.892 
3.443 
3.448 
4.842 
4 . a4 2 
5.196 
0 .o 

17 23 

S T WING-8ODY PLANFORM I 
E+02 1.911 E+Ol 3.928 
E+Ol 1.63 E+00 2.2719 
E+Ol 5.17 E+OO 2.2719 
E+01 5.17 E+00 6.00 R6 
E+Ol 1.364 E+Ol 6.OOR(6 
E+01 1.364 E+ol 0.0 
&+01 1.3h4 E+r, !. 0.0 
E-30-1.0 E-00 

SAk’PLE CASE 
F+Ol 7.58 E-02 I.. 115 E-O 1 
E-01 1.63 E-00 b.64 E-02 
E-01 2.0 E-00 9.6 E-03 
E-01 7.0 E-00 9.6 E-03 
E-01 1.96 F_-00-2.22 E-02 
E-00 1.96 E-no-2.22 E-02 
F-00 1.87 E-00-3.6 E-02 
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LIFT OISTRlBUTION FROM THE METHOD OF LAWRENCE 

INPUT DATA 
S S 1 UING-BOOV PLANFORW I SAMPLE CASE 

L R Cl C L FB C M FB 
0.1911000E 02 0.3928000E 02 0.758COOOE-01 O.lA15000E-00 

X s DS/OX DA/OX 
0.1892oooE 02 0.1630000E 01 O.Z271900E-00 0.163iOOOE 03 0.4b40000&-01 
cl. 3448000E 02 0.517OOOOE 01 0.227lYOOf-00 0.2OCOOOOE 01 0.960c000E-02 
0.3448000E 02 0.5170000E 01 0.6008600E 00 0.2000COOE 01 0.9600000E-02 
0.4842COOE 02 0.1364000E 02 0.6008600E 00 0.1960000E 01 -0.2220000E-01 
0.4842OOOE 02 0.1364000E 02 
0.51~6001)~ 02 0.1364000E 02 :: 

0.1960000E 01 -0.222OOOOE-01 
0.1870000E 01 -0.3600000E-0; 

S S T WING-BOCV PLINFORW I SAMPLE CASE 

NUMBER OF TERMS, N = 12 M = 23 

LIST OF A SUB R, P=O,h-1 
0.6306876E-02 O.l540563E-00 O.R980984E-01 -0,.2766669E-03 -0.3390085E-01 

-0:lS80724E-01 0.1406449E-01 -0.8400617E-02 O.l250172E-02 -0.44’60072E-Of 
O.l105976E-01 -0.8550003E-02 

c L c M C0.P 
0.2090983E OL O.t287854E-01 0.387C534E 02 

ii 0 
THETA(h1 X(N) 

0.5196f 
1 0:1500E 02 0.5140E 

3” 
0.3000E 02 0.4975E 
0.4500E O2 0.4712E 

4 0.6OOOE 02 0.4370E 

2 0.750OE 0.9000E 02 02 0.3972E Ci.3544E 

e’ 
0.105OE 03 C.3116E 
0.1200E 03 0.2718E 

9 0.1350f 03 o.2376E 
0.1500E 03 0.2113E 
0.1650E 03 0.194BE 

DCL/DX 
02 -0. 
02 0.2256E-00 
o”f 0.7440E 00 

C.1483E GA 
02 0.1982E 01 
02 0.2018E 01 
02 0.1452E 01 
00: 0.5467E 00 

0.4324E-00 
02 O.l448E-00 
02 0.2272E-00 
02 -O.l657E-00 
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c CORRECTED SLENDER BODY THEORY - INTEGRAL METHOD OF LAURENCE 
c FOR GENFRAL WING-RODY COMBINATIONS 
C 

DIMENSION CFI20,201,RF(201,A(20),HRN~21) 
DIMENSION XGIlO),CTH(ZO),WG(20I,TALKI2O~,XLI991 
COMMON X,BETA,CLSBT,C,SR,ELR,CEl,CLFB,Cf~FB,TALK,XL,KIN,KO 

C 
400 
40 1 
402 
403 
404 
405 
406 
407 
408 
409 

FORMAT (48Hl LIFT DI STRIB!JTION FROM THE METHCID OF LAWRENCE///) 
FORMAT(lX,I4,15,F10.51 
FORMAT(/21H NUMBER DF TERMS, N =,13,6H bl =,13/I 
FORMATI/29H LIST OF A SUB R, R=O,N-l/1 
FORMAT(lX.5E15.7) 
FORMAT(5X~I5,4(2X,E11.4~) 
FORMAT ( //46H N THETA(N) X(N) DCL/OX/) 
FORMATI//38H c L C M COP/I 
FORMATI //12H INPUT DATA/ I 
FORMATt lX,A3,19A4) 
KIN=5 
KO=6 

TUPI=.63661977 
PI=3.1415927 

10 WRITE(KO,400 1 
40 WRITE (KU,4081 

CALL LOFT IO 1 
READ (KIN,4011 NMAX,MG 

41 WRITE(KO,409) (TALK(I),I=1,20) 
HRITE (K0,402) NMAX,MG 
NP=NMAX+l 
ENMAX=NMAX 
MGP=MG+ 1 
E M G = M G 

C 
C LOOP ON THETA N 

DO 27 N=l,NMAX 
EN=N-1 
THN=EN=P I /ENMAX 
COSTH=COS I THN 1 
X=Ch”-COSTH 
CALL LOFT(l) 
BETASQ=BETA*BETA 
RF(NJ=0,5*TOPI*CLSBT 
DO 11 NR=l,NP 

11 HRN(NR)=O. 

c” TRAPEZOID RULE FOR HRN 
DO 19 M=l,CIGP 
Ebi=i4-1 
TAU=PI*EM/EMd 
COST=COS ( TAll 1 
AKG=COST-COSTf-! 
IFIABS (ARG)-0.001/F~G)12.12,13 

12 GRAND=O. 
GO TO 14 

13 GRAND={ SORT I /‘.RG~:ARG+BETASQl -BETA) /ARG 
14 FACTOR=2./EriG 

IF(M-1116,16,15 
15 IF(H-MGP)17,16,16 
16 FACTOR=l./EM<i 
1’7 IJO 18 NR=l,NP 
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ENR=NR-1 
COSRT=COS (ENR+TAU) 

18 HRN (NR 1 =HRN (NR 1 +COSRT*GRAND+FACTOR 
19 CONTINUE 

FORM COEFFICIENT ARRAY FOR A SUB R 
HRN( 1)=.5+HRN(l)+TOPI+THN-3. 
SINTH=SIN (THN) 
Of3 26 NR=2,NP 
RN=NR-1 
IF(SINTH)21,21,22 

21 HRN(l\!R)=.5*HRN(NR)+TOPI/RN+BETA::RN 
GO TO 23 

22 SINRTH=SIN (RN+THN) 
HRN~NR~=.5~HRN~NR~+SI~lRTH~~~TOPI/R~l+BETA/SI~lTH~ 

23 MR=NR-2 
IF(MR-1)24,25,25 

24 MR=l 
25 IR=NR-1 
26 CF(N,IR)=HRN(NR)-HRNO 
27 CONTINUE 

CALL SMLSLV(NMAX,CF,RF,A,DETI 

WRITE (KO,403) 
WRITE (K0,404) (A(NR),NR=l,NMAX) 

CL=4.::PI*(A(l)+A(2)) 
cop=c*t l.- .5*IA( 1)-A(3) )/(A( l)+A(2) 1 )+XL( 1) 
CM=CL*(CEl+XL(l)-COP)/ELR+CMFB 
CL=CL+CLFB 
COP=CE l+XL ( 1) -ELR+CM/CL 
WRITE (K0,407) 
WRITE (K0,404) CL,CM,COP 
WRITE (K0,406) 
DO 32 N=l,NMAX 
NM=N-1 
EN=NM 
THN=PI*EN/ENMAX 
XBAR=COS ( THN 1 
DCLDX= .5::A( l)*SIN (THNI /I l.+XBAR) 
DO 31 NR=2,NMAX 
ENR=NR-1 

31 DCLDX=DCLDX+A(NR)+:SIN (EF\!R*THN) 
DCLDX=8.<:DCLDX 
XBAR=C::‘( l.+XBAR)+XL( 1) 
THb!= 180 .+EN/ENMAX 

32 WRITE (K0,405) NM,THN,XBAR,DCLDX 

GO TO 10 
END 
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SUBROUTINE LOFT(M) 
C 

DIMENSION XW(99),R(25),DR(25),RAO,DRA(25),TALK(20~ 
COMMON X,BETA,CLSBT,C,SR,ELR,CEl,CLFB,CMFB,TALK,X~J,KIN,KO 

C 
410 FORMAT(EOA4) 
411 FflRMATt lX,5E16.7) 
412 FORMAT(lX,5E14.7,313) 
413 FORMATf /77H S R L R c 1 

1 L FB C M FB/) 
4 14 FORMAT ( /76H X S DS/DX 

1 A DA/DX/) 
IF(M)l,ll,l 

SEARCH 
1 XN=X+XW(l)+C 

DO 2 1=2,IMAX 
IFtXN-XW(I 1 )3,3,2 

2 CONTINUE 
r 
c” OUT OF RANGE 

A=RA( IMAX) 
S=R( IMAX) 
GO TO 4 

C HERMITE INTERPOLATION 
3 IM=I-1 

DX=XW(I)-XW(IM) 
XA=(XN-XW(IM))/DX 
XB=(XN-XW(I))/DX 
HA=(l.+XA+XA)+XB*XB 
HR=( l.-XB-XB)*XAz:XA 
HC=DX*XB*XA=XB 
HD=DX=XA*XA*XB 
S=HA+R(IM)+HB*R(I)+HC+DR~IM)+HD*DRTT) 
A=HA~RA(IM)+HB~:RA(I)+HC*DRA(IM)+HD*DRAtT) 

4 RAT=A*A/( S*S) 
BETA=(S-AI/C. 
CLSBT=6.28318549S*S*( l.-RAT)*( l.-RAT)/SR 
RETURN 

C 
c INPUT WING-BODY CDNFIGtJRATION 

11 READ (KIN,4101 (TALK(I),I=l,20) 
\~lRITE(KO,410) (TALK(I),I=lr20) 
READ (KIN,4121 SR,ELR,CEl,CLFB,CMFB 
MRITE(K0,413) 
\dRITE (K0,411) SR,ELR,CEl,CLFB,CMFB 
WRITE (K0,414) 
DO 12 1=1,25 
READ(KIN,412)XW(I),R~I~,~R~I),RA(I~ 
IF(R(I1113,12,12 

17 WRITE~K0,411)XW(I),Ro,DR(I)1RA(I),RA(I~ 
13 IMAX=I-1 

C=.5*(XW(IMAX)-Xb’( 1) 1 
CEl=CEl-XW( 1) 
RETURN 
FND 
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SUBROUTINE SMLSLV(N,A,C,X,flETl 
DIMENSION A(20,20),AL(20,20),C~2O)rXo,M(2D~ 
DET = 0. 
DO 2 I=l,N 
CL(I) = C(I) 
DO 1 J=l,N 

1 AL(I,J) = A(I,J) 
2 CONTINlJE 

IR = 0 
PRD = 1. 
ALT = 1. 
Dfl 15 J=l,N 
ALTA = -ALT 
BIG = 0. 
DO P, I=l,N 
IRHO = 1 
IF (IR) 21, 5, 3 

6 IRHO = IRHO + 1 
3 IF (I-M(IRH0) 1 4, 8, 4 
4 IF( IR-IRHO) 21, 5, 6 
5 ALTA = -ALTA 

V = ABS (AL(I,J)) 
IF (V-BIG) 8, 8, 7 

7 BIG = V 
ALT = ALTA 
M(IR+l) = I 

8 CONTINUE 
IF (BIG) 21, 21, 9 

9 I = M(IR+l) 
PRD = PRD * AL(I,J) 
CL(I) = CL(I)/ AL(I,J) 
IF (J-N) 10, 16, 21 

10 L = J+l 
DO 11 K= L, N 

11 AL(I,K) = AL(I,K)/ AL(I,J) 
IR = IR + 1 
On 14 IU= 1,N 
DO 12 IRHO = 1,IR 
IF (Ill-Mf IRHO) 1 12, 14, 12 

12 CONTINUE 
DO 13 K= L, N 

13 AL(IU,K) = AL(IU,KI - AL(IU,J)*AL(I,K) 
CL(IU) = CL(IU) - AL1 IIJ, J)::CL( I) 

14 CONT I NUE 
15 COh!TINUE 

GO TO 21 
16 DET = ALT g: PRll 

I = PI(N) 
X(1\‘) = CL(I) 

17 IF (J-1) 20, 21, 18 
1P L = J 

.I = J-l 
I = M(J) 
X(J) = CL(I) 
D!? 19 K= L, 1\! 

19 X(.1) = X(J) - AL(I,K)=X(to 
C,n TO 17 

20 DET = 0. 
21 RFTURN 

END 
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APPENDIX C 

LATERAL VELOCITY AT THE EDGE OF THE WING 

The local velocity at the wing edge is found directly from the velocity 

potential by using the expression 

v - iw cEs t = t& = fluEro 

Differentiation of Equation (D-l) of Appendix D yields 

and 

(C-1) 

(C-2) 

dwl ' 

=k 

1 1 

2- - -iVa da (C-3) 
r U+Y 

2 r 
0 i 

1 1 
0 

fS+- U-- (5. 1 0 i 

where 

W1 =W-Ban< 

Also, differentiation of the transformation Equation (20) yields, after 
simplification 

(C-4) 

Therefore, using the Kutta condition of Equation (24), we find from the 

above expressions that 
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2 r 

1 
+ 

1+* u 
r2 

1+- 
(3 2 

2 2+ r r 2 
0 

r 
u-- u. 0 0 -- -- 

0 3. cr. 
; 

1 i a I 
i i 

(C-5) 

For points lying on the surface of the wing-body combination (i.e., on 
the transformed circle), we have 

ie 
u = roe (C-6) 

Substitution of this expression into Equation (C-5) yields, after algebraic 

manipulation, 

fe2ie (l+e2i@)c+e2ie(l+e-2is)[ro2 (e2iB-1)2 + roeiB(e2i@-1)D + e2i@ i] 

i ro2 (e2ie-,> 3 + roeie (,2ie-l)2 D + ezie (ezie-,) J$ 
[i 

(C-7) 

where 

2 2 r 0 - r 
A=u~-~+u 0 

i-r 
1 0. 1 
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2 2 r 
DC-+ 

r 

1 

Since Equation (C-7) reduces to the form zero over zero at 8 = 0, we 
apply L'Hospital's rule by differentiating the numerator and denominator 
in the braces with respect to e and evaluate the resulting fraction at 
8 = 0. Noting that 4 = s at 8 = 0, we find that the resulting expressia7 
for the complex velocity at the wing edge? after simplification, is 

(C-8) 

Since the expression in the brackets is the difference between a complex 
number and its conjugate, this quantity must be purely imaginary. Therefore, 
the right side of Equation (C-8) is real, and we conclude that w is iden- 
tically zero at the wing leading edge. This must in fact be the case, since 
the Kutta condition is satisfied and the flow leaves the wing tangentially. 

It is further noted that vortices lying in the plane of the wing (i.e., 
on the real axis) do not contribute to vi since for such vortices 0. = 0 

1 i 
and the expression in the brackets vanishes identically. Hence, vi can 
be calculated at each chordwise station without regard to the new flat sheet 
being shed there. The upper limit on the summation can therefore be re- 
placed by n-l, as in Equation (34). 
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APPENDIX D 

TRANSVERSE VELOCITIES OF THE SHED VORTICES 

The complex potential for a system of n vortex pairs and their images 
in the circle plane with a free stream of magnitude Va upward at infinity 
is given by (see Ref. 26) 

-ri 

C . 
-ai 

U. 1 
3 . ri 

ro2/Zi 

0 plane 

t 
Va 

W(U) = Blnc(cr) - iVa (D-l) 

and the complex velocity (in the physical 5 plane) of the kth vortex can 

be written in the form (see Ref. 34) 

vk - iw k 
c=& <=c, 

(D-2) 

Therefore, we must carry out the indicated differentiations and separate out 

that part of the first term which removes the singularity of the second term. 
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the 
Differentiation of Equation (D-l) with respect to CT yields (omitting 

first term for convenience) 

I 
/ dwl 

do 

1 ir k 1 - iVa --. 
2 r 2lr u-u 

0 
k 

'k + q 

(D-3) 
U=U k 

where W1 = W - Ban<. Now we have from the Kutta condition of Equation (24) 

n 

0 
+ i rk rk irk 

o.2 2-cr- +F' -r r 'k 1 < ' 5, 
1 0 

'k + q (5=CJ k 

(D-4) 

(D-5) 
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The sum of the last two terms can be written as 

1 (D-6) 5=5k 

and we note that this quantity is of the form zero over zero. BY applying 
L'Hospital's rule twice, we find that the limit as c approaches ck is 

given by 

lim 

Substitution of this form into Equation (D-5) therefore yields for the com- 

plex velocity of the kth vortex 
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i 

and we recall that B = Va(da/dx> The first and second derivatives appear- 

ing in this expression are obtained by differentiating the transformation 

Equation (20). Thus, 

and 

D-10) 
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APPENDIX E 

DESCRIPTION OF A COMPUTER PROGRAM FOR 
SEPARATED-FLOW LIFT PREDICTION 

As an implementation of the analysis presented in the sections on 

Theoretical Analysis and Determination of the Shedding Rate, a computer pro- 
gram was developed to calculate the aerodynamic lift distirbution due to 

separated flow by following the positions of multiple discrete vortices in- 
troduced at uniformly spaced chord stations along the leading edge of a wing. 

A description and listing of this FORTRAN IV program are presented here. 
Also, directions for the use of the program are furnished along with two 

sample cases. 

As seen from the analysis of the aforementioned section, the essential 

mathematical problem to be treated is to solve a set of simultaneous first- 
order differential equations - the equations of motion of the discrete vor- 

tices. Since the treatment of the vortices was conveniently accomplished 
with the notation of complex numbers, it was convenient to use the complex 
arithmetic feature of FORTRAN IV in developing the computer program. 

The program is organized in four parts, the main program and three sub- 

routines. The main program functions to control the subroutines, numerically 
integrate the differential equations of motion and to output the results of 
the calculation. The numerical integration scheme adopted for this program 

is the Gill variation of the Runge-Kutta method, which is convenient for com- 

puter usage, although less efficient than predictor-corrector techniques of 
the same order. 

The subroutine BODY is used for the input of the wing-body configuration 
by specifying values of wing semispan and body radius along with their chord- 

wise derivatives at selected chord stations. In addition, it is used to 
interpolate for values of these quantities as they are required in solving 

the equations of motion. 

Subroutine DERIV is used to calculate the derivatives of the vortex 
positions, that is, the vortex lateral and vertical velocity components, 

which are then numerically integrated in the main program to trace the path 
of each vortex as it spirals rearward over the wing. This subroutine is 
also used to calculate the elements of the lift distribution. 
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Two versions of subroutine VORTX are provided. The function of both 
is the same - to calculate the initial strength and position of each new 
vortex as it is being introduced. In one version, the theoretical method 
for introducing each new vortex, described in the section on Theoretical 
Method, is programed. In the other version, a semi-empirical approach was 
used. A table of vorticity, y, as a function of two variables, angle of 
attack, a, and wing leading-edge slope, ds/dx, was obtained from available 
experimental results for delta wings from aspect ratio 0.5 to 2.0, and an 
angle of attack range from 5 to 20'. This second version of VORTX obtains 
the value of y as it is required by two-dimensional interpolation from 
local values of CI and ds/dx. The strength r of the discrete vortex is 
then determined, and the position is solved for so as to locally satisfy 
the Kutta condition. Hollerith statements within each program, which serve 
to distinguish the two versions, are printed in the heading before the 
answers are printed on each output listing. The user selects whichever of 
the two methods he desires to employ by combining the appropriate subroutine 
deck in the program deck that he submits for each series of calculations. 

The input to the program consists of a deck of cards which specify 
the wing and body dimensions and slopes at selected chord stations, followed 
by a series of cards with two numbers: n, the number of vortices to be used, 
and c, the angle of attack to be considered. 

The output from the program is labeled, and consists of the following 
quantities: 

(1) The input data are listed for reference. 

(2) A Hollerith statement is printed to identify which version of sub- 
routine VORTX is being used. 

(3) The chordwise lift distribution is given by listing the cumulative 
values of CL and CM for each of the chord stations where a new vortex 
was introduced. 

(4) The positions and strengths of the discrete vortex elements are 
listed for the last chord station considered. 

The detailed input-data format is as follows: 

First Card 

Seventy-nine columns of comments for the user to lable and identify the 
job. These are printed at the head of the listing of the input data, 
and again in the heading for the output answers for each case. 
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Second Card 

Cal. 1 

Cal. 2-15 

Cal. 16-29 

Cal. 30-43 

Blank 

+X.XXXXXXXEcyY, reference area of the wing, SR, ft' 

+X,XXXXXXXE+YY, reference length for moments, 

& R' ft 

+X.XXXXXXXE+YY, chord station of point about which 
moments are computed, cl, ft 

Third and Following Cards 

Cal. 1 Blank 

Cal. 2-15 +X-XXXXXXXE+YY, chord station, x, ft 

Cal. 16-29 +X.XXXXXXXEfYY, wing semispan, s, ft 

Cal. 30-43 LX*XXXXXXXE+w, slope of wing semispan, ds/dx, 

dimensionless 

Cal. 44-57 

Col. 58-71 

+X.XXXXXXXE+w, body radius, a, ft 

+X*XXXXXXXE+YY, slope of body radius, da/dx, 

dimensionless 

Next Card 

Indicates that specification of wing-body configuration is terminated. 

A negative value of S is used to indicate this condition. Thus, 
this card need only heave -1. in columns 16, 17, and 18. 

Last Few Cards 

Cal. 1 Blank 

Col. 2-5 KKKK, the number of vortices, n 

col. 6-19 +X.XXXXXXXE~YY, angle of attack, a, in degrees 

The number of these "last few" is the number of cases desired for the 

specified wing-body combinations. The input decks for several jobs (each 

job for one wing-body with any number of cases) may be stacked if a blank 

card is inserted after tha last card of each job. (The program senses zero 
angle of attack in the blank card as an indication to return to the input 

60 



I of a new wing-body configuration.) As in the program for attached-flow lift, 
the order of the cards in the group "third and following" must be in order 
of increasing values of chord station, x. The input deck for this program 
is.compatible with the input requirements of the program for attached-flow 
lift, except for the "last few cards." Also, this program does not make 
use of the forebody lift and moment values which may be additionally speci- 
fied on the second card for the attached-flow program. 

The time and output line requirements for each case may be estimated 
from the following approximate formulae: 

TIME z <&)2 t <Sly minutes 

LINES z 2n + 100 

Values of n = 24 for the semi-empirical method (gamma by table lookup) 
and n = 48 for the theoretical have been used satisfactorily, although for 
small angles of attack (loo), larger values are desirable in the theoretical 
method. 

The input deck for both sample cases (same for both) is listed below. 
The output from each of these sample cases is reproduced on the following 
pages. The last pages of this appendix present the listing, in FORTRAN IV, 
of the five parts of the program, including the two versions of subroutine 
VORTX. 

Input for the sample cases. 

s S T WING-BODY 
4.39 E+O2 1.911 
1.892 E+Ol 1.63 
3.448 E+01 5.17 
3.440 E+Ol 5.17 
4.842 E+Ol 1.364 
4.042 E+Ol 1.364 
5. I.96 E+O 1 1.364 
0 .o E-00-1.0 

74 1.5 E+Ol 

PLANFORM I 
E+Ol 3.928 
E+OO 7.2719 
E+OO 2.2719 
E+OO 6.00 86 
E+O 1 6.0086 
!z+01 0.0 
E+Ol 0.0 
E-00 

SAMPLE CASE 
E+Ol 7.58 E-02 1.115 E-c) 1 
E-01 1.63 E-00 4.64 E-02 
E-01 2.0 E-00 9.6 E-n3 
E-01 2.0 c-no 9.6 E-r;3 
E-01 1.96 E-00-2.22 E-O). 
E-00 1.96 E-00-2.22 E-02 
E-00 1.87 E-00-3.6 E-02 
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. :. 1 .s 

WLTlPLi VtPlEX WOCEL _c- ..-- __-__-. . ---_ --- --.- -.-. ^.._. ._-._... .- 

-- -- ._-. ----.----.---. . .._.... -_..-__-- 
INPUT CATA 

S S I UING-BCCY PLANFORW 1 SAMPLE CASE 
. ..-__-.- ._... _.._._ -.. _ ._ .,. 

s w L R c 1 
0.439C000~ c3 0.1911000E 02 0.3928OCOE 02 

--__ --... - - . . -.--. ___ ..__ ._.. ._ __ -.. 
x S us/ox A CA/OX 

0.1892000~ 02 0.1630000:’ 01 0.2271900F00 O.lbXCOOE 01 0.464COOCE-01 
0.3448OOCL 02 0..%17sBlZ-Ql ._~L7~QEd5!-hZ Ql-_ Q,%!i’&X!OE:OL- ___ _ 
0.3448cco: 02 0.5170000i 01 O.tO08bOOE 00 0.2000COOE 01 0.9600000E-02 
0.4842COOr 02 C.1364000E 02 0.6008bOCE OC 0.A9bCCOOE 01 -0.222OOOOE-01 
0.4842COOt Ci C.l?trt_ZlOOt 02 0. 

----0.5196cooi 02 
0.19bCCOU 01 ~O.Z2Z!X!X!CE~Ql -____- __ _..__. __ 

0.136400CE 02 0. o.1e.7ccoot: 01 -0.3600000E-01 

S S T YIRG-BGCY PLANFORW I SAMPLE CASE --~--.- ._-__._-..- 

24 VORTICE), ALPHA = O.lSCCOCOE 02 
~._ _--- ______.-__-. .._-.. - .---- ------ _.._ .- .----- ~.__ _.^_____ .._ . _ 

NEY VORTEX INTRCOUCEC USING THEORETICAL METHOD 
______-- - . .- - .--._. .-. .-.-. --_. ._.. __ _ 

LIFT CISTRIBUTION 
__.... -.----.A .--. -- -. c L .._ __~. c r - 

0.2C~97E 02 O.l69ClE-02 OmiEC07E-02 
0.21c73E 02 0.23349E-02 0.23696E-0; 

---.- 0.23CSOE_Ci 0.30e3lE-02 ._. 0.31151E-02 .___._. _.___.._ -_. ..- -.-.-_ ..___... .._... _. 
0.24’1:7i 02 0.40407E-02 0.38083E-02 
0.25eC3E 02 0.55268E-02 0.50604E-02 
U.27i8OE 02 G.752bbE-02 0.62420~-02_- _- .__ -. _ .._ --_. .-.. ..-_.. _ ._ __-.-.- _..-____-. -_- .-.---.-.._. -. 
0.2bC57C CZ O.l0192E-01 0.8110bE-02 
0.29533E C2 O.l34bIE-01 0.95429E-02 
0.31310E CL O.l7698E-01 O.i1939E-0: _____ -. ..-. .- .--.. ._ 
0.32687E CZ 0.23063E-01 O.l3501E-01 
C.34Ct3E c2 0.29CbPF-Cl O.l6327F-01 
C.35440E C2.._ .OO.Z.?8tE-Ol -_ __- --- - O.l63lbi-01 ---.__.. _-__. I .-. ._ -.. __ 
0.36d17E C2 0.34571E-01 O.l7462E-01 
0.38i93E 02 0.37934E-01 O.L6904E-01 

-__ __ C.39C70E C2 C.42731E-01 O.?B087E-Oi -O.ibbPOE-Oi - .___. - -.-_._ .-----.- _ .-_ ._. _. __^._ 
0.405475 c2 0.4@6CtE-01 
0.42323E 02 0.55535E-01 O.l7253E-01 
0.43700E 02 O.b32btE-0: O.l4317E-01 -. _ _--.. -~ - - -- -----.--.-. . _ 
C.45C77E c2 0.7194CE-01 O.l3830E-01 
G.46453E ci O.e1691E-01 0.86763E-02 

.-- 0.47b3&E C,? 0,92743E-AL- 0.64aq3E-OL-.. _- ._.. --__ ._--_^-.---.- . _ _.., 
0.49r07E C2 O.i1508E-CO -O.b8C23E-02 
C.50xt3E Ci O.L5597E-CO -0.25281E-0: 
0.5lStOE 02 ._-- --_ ..- ._.-. c.2027~~:~~ -0.58946wx ___. _ _. ._. _. .__.. . -.-- 

VORTEX PROPERTIES AT X = 0.519tOE 02 
--I V(I) -----Lo GAMNAfI) -__- .- -__--_ ._-. ~.-.-__ .__ _ .._ 

1 0.79909E 01 O.lZESPE 01 0.35169E-00 
2 O.lCC7bE GZ 0.17etOE (II 0.30810E-00 

--.--. $- 0.8302:E 01 0.5R507E CO 0.2q068E-OO-~_~..-.-__. ..--_--..- __ __ _ _ _ ._ 
0.93M57E Cl 0.10543E Oi 0.30124E-GO 

5 0.72154E 01 0.5225CE CO 0.31503E-00 

--4 0.963?4E Cl 0.74455E CO 0.33854E-00 ----.- -.---~.-_-. _.-. .__ -._ _ ._ .._, 
C.844:9E Cl O.ll::bE 01 0.34505E-00 

B o.e945eE cs 0.15299i OS 0.39344"-cc 
9 0.96512E Cl. @.L45! 8E 01 0.42317E-00 

10 O.:O: 15E 02 C.:Ot79E 0: 0.45344E-00 
11 O.lOctOE 02 G.578otE co 0.47679E-00 

-12 __.. u.lo,coc_G~. _ -_.-_ .-..._ ._ C.Z5’35!E-CC _ - 0.54C42EtO---~--.- _... _. ..-.-_-_ _..- _- __..- 
13 G.d65?8F Cl C.34576E-00 0.54651E 00 
14 IJ.'IilCOE 01 C.41205E-00 0.54288E 00 

C,.96Yi45 G.65173E 01 _ --. -w -.4.55468E-C_O ._.. --__-- --~.- .-. ---. -- 
0.70cliE Cl 0.171”OE 01 0.57225E 00 
O.SlFliE Cl C.ZCY6iE 01 0.59414E 00 
.0.94%9LO_l . C.?Z7ijE_oL... P-..~9M~.QQ _._ _ _ _ 
C.107e8E C2 C.Z;?7OE 01 0.64729E 00 

20 0.11784E 02 C.184tiCE 01 0.67770E CO 
_. 22 .___ IL.d?i-3’?EL~?. ..__ C.l.~?%~-~l. ~..OZLlIL%E~L.~--- -.- .-~- -.~. -.. --.--. 

22 0.1329lE O? 0.18251E 01 0.76628E 00 
23 0.130iOE O? 0.961BOE 00 0.81039E 00 

---. 24 ____ q.,137%5.EJf. .._ f,--. ,. 0.79Olbi 00 -_ _ . ..- _---__-- __.. _- ._._ -_.-- .--- . .._ ._ 

0 O.:OI4iE 02 0.1233LE 0: 0.12420E 02 
-- -..--.~-.--.- . ..- - .___ ---.--- -.------ -.-- . 

_.. _ . ..X..=._o_.SX?~L)E.02 C .?..P,ZPi?6E.-CO------- ..--- _- __... ..- _- CM =-0.5894bE-01 CGP = Ot’t483tE.O2- .- -._ 
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MULTIPLE VORTEX MODEL 

INPUT OATA 
S S T. WING-BODY PLANFORM I SAMPLE CASE 

s 9. 
0.19:1~00E 02 

Cl 
0.4390000E 03 0.3928000E 02 

X OS/OX 
0.189200OE 02 0.163~000E 01 0.22 71900E 00 
0.344tlOOOE 02 0.5170000E 01 0.2271900E 00 
0.3448000E 02 0.5170000E 01 0.6008600E 00 
0.4842000E 02 0.1364000E 02 0.6008600E 00 
0.4842000E 02 0.1364000E 02 0.0000000E-38 
0.5196000E 02 0.1364000E G2 0.0000000E-38 

MULTIPLE VORTEX WODEL 

S S T WING-BODY PLANFORM I 

24 VORTICES, ALPHA = 0.1500000E 02 

NEW VORTEX lNTROOUCED USING THEORETICAL METHOD 

SAMPLE CASE 

I 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

VORTEX PROPERTIES AT X = 0.51960E 02 
Y(I) Z(I) GAMHAtI) 

0.79909E 01 
0.10076E 02 
0.83022E 01 
0.93897E 01 
0.72155E 01 
0.96335E 01 
0.84419E 01 
0.89498E 01 
0.96912E 01 
0.10115E 02 
0.1066OE 02 
0.10200E 02 
0.86538E 01 
0.72099E 01 
0.65173E 01 
0.70872E 01 
0.81812E 01 
0.94599E 01 
0.10788E 02 
0.11784E 02 
0.12540E 02 
0.1329lE 02 
0.1313lOE 02 
0.13745E 02 

0.1285BE 01 
0.17860E 01 
0.58510E 00 
0.10543E 01 
0.92249E 00 
0.74455E 00 
0.11556E 01 
0.15299E 01 
0.14919E 01 
0.10679E 01 
0.57806E 00 
0.2595lE 00 
o.34574E 00 
0.41205E 00 
0.96924E 00 
0.17140E 01 
0.20962E 01 
0.227llE 01 
0.2127OE 01 
0.1840OE 01 
0.18340E 01 
0.1825lE 01 
0.96180E 00 
O.OOOOOE-38 

0.38169E 00 
0.308lOE OQ 
0.29068E 00 
0.30124E 00 
0.31503E 00 
0.33854E 00 
0.36505E 00 
0.39344E 00 
0.42317E 00 
0.45344E 00 
0.47679E 00 
0.54042E 00 
0.5465lE 00 
0.54288E 00 
0.55468E 00 
0.57225E 00 
0.59414E 00 
0.61955E 00 
0.64729E 00 
0.67770E 00 
0.71046E 00 
0.76620E 00 
0.81039E 00 
0.79016E 00 

0 0.10142E 02 0.12331E 01 0.1242OE 02 

LIFT DISTRIBUTION 
X 

3.20297E 02 
0.21673E 02 
0.23050E 02 
0.24427E 02 
0.25803E 02 
0.2718OE 02 
0.28557E C2 
0.29933E 02 
0.313lOE 02 
0.32687E 02 
0.34063E 02 
0.35440E 02 
0.36817E 02 
0.38193E 02 
0.39570E 02 
0.40947E 02 
‘I .42323E 02 
0.4370oE 02 
0.45077E 02 
0.46453E 02 
0.47830E 02 
0.49207E 02 
0.50583E G2 
0.5196OE 02 

c L 
O.l4090E-02 
0.24426E-02 
0.33137E-02 
0.4358lE-02 
0.5919lE-02 
0.80143E-02 
O.l0792E-01 
O.l4190E-01 
O.l8586E-01 
0.24159E-01 
0.30929E-01 
ll.34275E-01 

0.39301E-01 
0.44138E-01 
0.50090E-01 
0.57128E-01 
0.64995E-01 
0.73829E-01 
0.83767E-01 
0.95033E-01 
0.11793E 00 
0.1597lE 00 
0.2070lE 00 

c n 
O.l5012E-02 
0.24445E-02 
0.33057E-02 
0.40629E-02 
0.53809E-02 
0.66157E-02 
0.85667E-02 
O.l005lE-01 
O.l2542E-01 
O.l4153E-01 
O.l7068E-01 
O.l7078E-01 
O.l8247E-01 
O.l7650E-01 
O.l8869E-01 
O.l7433E-01 
O.l8022E-01 
O.l5019E-01 
O.l4537E-01 
0.92724E-02 
0.70546E-02 

-0.65735E-02 
-0.25441E-01 
-0.59526E-01 

X = 0.5196OE 02 

A DA/OX 
0.1630000E 01 0.4640000E-01 
0.2000000E 01 0.9600000E-02 
0.20000OOE 01 0.9600OOOE-02 
0.196OOOOE 01 -0.222OOOOE-01 
0.1960OOOE 01 -0.2220000E-01 
0.1870000E 01 -0.360000OE-01 

CL = 0.2070lE 00 CM =-0.59526E-01 COP = 0.44775E 02 “$. 
.“,:,; 

., 
figure 2. - Sample case with correction to 

VORTX(M) (appearing on page 62.) 



INPUT CbTA 
5 5 T WING-IIOCV PLANFOIM 1 SAHPLE CASE 

SR Cl 
0.4390000~ 03 0.19::~00E 02 0.3928000E 02 

___--_-- _ ___ -..- 

o.la9:Coot 02 
s OS/OX c OAIOX 

0.163000CE 01 0.2271900E-00 0.163COOOE 01 0.4640000E-01 
’ i __lo.?ssecwt 02 _ 0.5170000L: .O,t2_119oOE:&O_--. 0 2OOCOOOE. 01.. PI 0.9600000E~0_2 _. ______ _ _ _ 

0.344aoooL 02 0.5170COCE 01 O.CCoa60oE 00 0.200CCOOE 01 0.9600000E-02 
0.4842OOOE. 02 0.13t400Cf 02 O.tOOBbOOE 00 0.196CCOOE 01 -O.ZZZOOOOE-01 
0.4842CtOt: 02 

0.1364OOCi 02 -2 0.107CCOOE 
C.1364000E 02 ._-_..._ 0.19hOOOOE _ ~_~_ 01, -0.22200OOE-01 .._ __^. --- 

0.519LCOOE 02 01 -0.3600000E-01 

.--_ -- PULT IPLE VORTEX I”oCEL_ _.-_- -.--_. __ - _ _.- __, .__. ._ - __ --.. ..- 

24 VORTICES, ALPkA = 0.1500000E 02 
-.. . _ _. - 

NE,, VORIEX INTRCOUCEC USING TABLE LCOk-Uh’ 
___,- - ---~ -..-- - . _ . .._._ ._ 

LIFT CISlRIHUlICN 
_..._-._...._.. m..d---p-.-.cA. . ..-..^ --.c_.p --.. ---.---. - 

0.20i97E CZ 0.36t09E-02 0.39004E-02 
“.21t73E 02 0.67245E-01 C.h7086E-C2 

CZ ----. . 0.23~5OE 0;9322CE-01.... 0.92i3!EyOZ 
0.24427E C2 O.l1587L-Cl O.l0854E-01 
0.25603E 02 O.:4128E-01 O.l3107E-0; 
0.27;BOE Cz-, C.l73,2E-01 -.-0.!$8&1~-01 -- -.-. -.. .-.,. -- 
O.;b557E Ci 0.209iOE-01 O.i7554E-01 
0.29433E cz 0,25257E-Cl O.I9283E-01 

_-.. U.31~10E 02 0.303bC,:O:. _-&2_2_4-4Mi. --.__-.. ..--.- __ _ __ ,_ _ 
G.32t67E C? C,3bC7CE-0; 0.23785E-Oi 
C.?4l,t3E Ci 0.42122E-L1 O.i6737E-c; 

_._ _ _ -C_.35440E C:-C.49_S39kPl.___ &L74_8_9EzPL_. ------ .._. 
0.36617E 02 C.52’31E-01 O.i9215E-01 
C.38:93E 02 C.5756aE-Oi O.ZR356E-01 

-9d9L70E 62 F~b44>!&4A __.. JhZ13W- __ ______-- - .-. -..--__ ..-- 
0.40947E C2 0.724i2k-01 

0.2a079E-01 

C.42L23E Ci O.elC7?E-01 0.29011E-01 
0.437COE CZ 0_,9J5EZzol.. 0.24995E-01 ..- _..-- - _...._.. . _._ 
C.4EL77E Ci c.loil9L-cn 0.24741E-01 
0.46s59E C2 0.113cY;-00 O.l8246E-0: 

_ ___-...- L,4xOE C2 C.l2.E:QD._ . ..0.1631OE-01 
0.49ZC7E CZ O.l4475E-00 0.4054lE-C2 
0.50583E C2 O.l7lt5E-00 -0.64409E-02 

V.519tOE CZ .Q>.l.?$.7%CQ -0.ZbQ3Hi - -__ -___---. ._- -_ 

VCATEX PRCPEWTIES bT X = 0.519COE 02 
_.. .-.-f _- -ILu-.--. .- LllL . .---. ..&ArmLLL 

0.1121lE CZ 0.18397E 01 0.56175E 00 
2 0.92ti7E Cl 0.19474E 01 O.:Ote5E 00 

--._ ..- Bu54E Cl C.U:B~..Cl. B..!+PWlc-oO 
0.10(1?3E 02 O.iOllaE 01 C,44016E-00 
c.:lteeE c2 

------&%3E 01 

C.5898CE-Lli 0.418t5E-00 
6E C2 0.42404=-CO 0.4011aE-CO 

. C.12167i 01 O.ZtlRZbE-00 
0.Oat19E 01 0.96'71E CC O.?7722E-CC a 

1x 
--_ 4. 

:i 
-- -- A?... &6 
- 4. 

19 

-_---. -._- _.._ -- 

__---.-___. -.._ _.. 

C.73i42f a? 0.6ClEbE co 0.?6.307E-OC 
lJ.lOt 15E Ci 0.15C36t 01 O.?603SE-00 
o.llr?ZE 0’ 0.7546iE CO O.?53e@E-00 
0c97084E 01 E&C&?&% .D:---B.-74124~pO_-.~~--.. ____ -.-. 
0.1041OE CZ O.lOe3JE ~1 0.73684E CO 
0.94589E Cl 0.44SeZE-00 0.72974E 00 

.P.82J63E Cl O.t34C7E 00 Ot7E43aE 00 ___- -. -_ 
0.75t37E Cl c.14oe2t 01 0.719et3E 00 
0.80747E Ci 0.22Ct4E 01 0.7156aE OC 
9.94129E..C... D.Zt534i. .Ol .0,7114&E. Wm.- .---. - _ 
0.10795E 02 0.26ii4E Ci 0.70659E 00 
U.lZC06E C’ O.;3951E Trl 0.702l!.E 00 

.e.;2949E C2 0.24751E .a.! 0.69t72E 00 -__. 
0.13CO7E C2 0.32563E 01 O.S9074E-01 
0.135OBE 02 G.25279E 01 0.98969E-01 

.a. ~~3~~~l~.C~~.D, . . _ ...o,y~a3httzD.a~~~.- - - _ .--.. 

--_-- ;p 
23 

_ -24.. 

(r.99341E 01 C.15?25i- Cl 0.12133E 02 
.- .--..___ -__ - _---_--. 

.- 

0 
__- _ 

.X .= 0.519_~o_E_.Oi CL..- 0.,&_9674E:.C.O _ . .._clL1-o.26613E-oA __.. C0P.z O.il.E!!.S.E -02 _.-.- ._-. .- 
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MULTIPLE VORTEX MODEL SEPARATED LIFT DISTRIBUTION 

COMPLEX ZTA,DZT,SGM,DSG,DDSG,DSGX,Q,C,VW 
DIMENSION ZTA(99),DZT(99),SGM(99),DSG(99),DDSG(99)tDSGX(99),C(lO), 

1Q(99),GAM(99),XEPS~lO~,EPS(lO~,TALK~2O1 
DIMENSION AA(4),BB(4),CC(4) 
COMMON /COMl/ ZTA,DZT,SGM,DSG,DDSG,DSGX,Q;C 
COMMON /COM2/ TALK, 

lA,S,DA,DS,RZ,DRZ,SR,ELR,CE,GAM,JMAX,X,AOS,AS~,RZSQ,DXEPS,CL,TOL, 
2CAL,SAL,TALF,IEMAX,IEPS,WOVIN,XEPS,EPS,DXIN,XBODY,KIN,KO,XINIT,DD 

L 

400 FORMAT{ 33Hl MULTIPLE VORTEX MODEL///) 
401 FORMATf 1X) 
402 FORMAT(lX,5E14.7) 
403 FORMAT(lX,I4,2E14.7) 
404 FORMAT1 /15H INPUT DATA) 
406 FORMAT{ lX,I4,19H VORTICES, ALPHA =,E14.7) 
407 FORMAT(//15X,17HLIFT DISTRIBUTION) 
410 FORMAIl lX,I4,5(3X,E12.5) 1 
411 FORMAT(45H X c L C M) 
412 FORMAT(5X,5(3X,E12.5)) 
413 FORMAT{/ 8X,24HVORTEX PROPERTIES AT X =,E12.5) 
414 FORMAT(47H I Y(I) Z(I) GAMMA(I)) 
415 FORMAT(20A4) 
416 FORMATf ///7H X =,E12.5,5X,4HCL =,E12.5,4X,4HCM =,E12.5,4X,5HCOP 

1 =,E12.5) r 
L 

C(lO)=CMPLX(O.,O.) 
NOUT= 1 
AA( 1)=.5 
AA(2)=.29289322 
AA(3)=1.7071068 
AA(4)=.16666667 
BB( 1)=2. 
BB(2)=1. 
BB(3)=1. 
BB(4)=2. 
CC( 1)=.5 
CC(2)=AA!2) 
CC(3)=AA(3) 
CC(4)=.5 
TOPI=6.2831853 
KIN=5 
KO=6 

INPUT 
101 WRITE(K0,400) 

WRITE(K0,404) 
CALL BODY (0 1 

102 READ(KIN,403) NVORT,ALFA 
IF(ALFA)101,101,103 

103 WRITE(KO,400 1 
WRITE(KO,415)(TALK(I),T=l,20~ 
WRITE(KO,401) 
k!RITE(Kfl,406)NVORT,ALFA 
h’RITE(K0,401) 

SET UP 
JMAX=l 
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I EMAX= 
TOL = .OO 1 
DZT( 11=CMPLX(O.,O.l 
SAL=TDPI*SIN(ALFA/57.29578) 
CAL=TOPI*COS(ALFA/57.2957R) 
TALF=SAL/CAL 
ZTA( lI=CMPLX(O.,O.I 
LAST=0 
EN=NOUT 
ENVOR=NVORT 
XSV=(XBDDY-XINITI/ENVOR 
DD=XSV 
xs=xsv/3. 
DXIN=XSV/EN 
X=XINIT+XSV 
DCM=O. 
SIG=-1. 
CALL BODY(l) 
DO 5 J=1,99 

5 Q(J)=CMPLX(O.,O.I 
6 CALL VDRTXtO I 

WRITE(KD,407) 
WRITE(Kfl,411) 
GO TO 33 

P L 
11 DELX=DXIN 

C 
C INTEGRATION LOOP 

21 DO 28 KI=l,NDUT 
23 DO 27 KRK=1,4 

GO TO (24,25,24,25I,KRK 
24 X=X+.5=DELX 

CALL BODY ( 1) 
25 DO 26 J=2,JMAX 

VW=AA(KRKI*(DZT( J)-BB(KRKIfsQ( J) I 
ZTA( JI=ZTA( JI+DELX+VW 

26 O(JI=D(JI+3.* VW-CC(KRKI*DZT( JI 
27 CALL DERIV 
28 CDNT INUE 

C 
C CHECK LOOP TERMINAL 

32 CALL VDRTXtlI 
33 SIG=-SIG 

DCM=DCM+(3.+SIGI*XS=CL 
CM=(DCM-(X-CE+XSI*CL)/ELR 
WRITE(KD,412) X,CL,CM 
IFIX-XBDDY+TDL=DXINI 55~57~57 

55 IF(X+DXIN*(EN-TOLI-XBflDYI 11,11,56 
56 DELX=(XBDDY-XI/(EN-TDL) 

GO TO 21 
C 

57 ~bJRITE(KD,413) X 
C’RITE(KD,414) 
GAMt l)=O. 
ZTA(lI=CMPLXIO.,O.I 
DD 34 J=2,JMAX 
GAM( lI=GAM( l)+GAM( JI 
ZTA( lI=ZTA( lI+ZTA( JI::GAM( JI 
JM=J-1 

34 !~RITE(KD,4101 JM,ZTA(JI ,GAM( JJ 
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--.--mm- ..-. _ _.... _-__ 

ZTA( ll=ZTA( l)/GAM( 1) 
WRITE (KO,401) 
WRITE(K13,410)LAST,ZTA( l),GAM( 1) 
CnP=CE-CW::ELR/CL 
WRITE(Kf3,416)X,CL,CM,COP 
GO TO 102 
E I\J D 
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SUBROUTINE BODY(M) 
C 

COMPLEX ZTA,DZT,SGM,DSG,DDSG,DSGX,Q,C,VW 
DIMENSION ZTA(99),DZT(99),SGM(99),DSGI99)rDOSG(99),DSGX(99),C(lO), 

1Q~99),GAM(991,XEPS(lO~,EPSI10),TALK~2O~ 
DIMENSION XW(25),R(25),DR(25),RA(25)rnRA(25) 
COMMON /COMl/ ZTA,OZT,SGM,DSG,DDSG,DSGX,Q,C 
COMMON /COMZ/ TALK, 

1A,S,DA,DS,RZ,DRZ,SR,ELR,CE,GAM,JMAX,X,AOS,ASQ,RZSQ,DXE~S,CL,TOL, 
2CAL,SAL,TALF,IEMAX,IEPS,WOVIN,XEPS,EPS,DXIN,XRODY,KIff,K~,XINIT,DP 

C 
410 FORMAT(20A4) 
411 FORMAT( lXt5E16.7) 
412 FORMATIlX,5E14.7,313) 
413 FORMAT t /43H S R L R c 11) 
414 FORMAT I /76H X S DS/DX 

1 A DA/DX/ 1 
IF(Mll,ll,l 

C 
C SEARCH 

1 DO 2 S=2,IMAX 
IFIX-XWII))3,3,2 

2 CONTINUE 
C 
C OUT OF .RANGE 

A=RA( IMAX) 
DA=DRA(IMAX) 
S=R ( IMAX) 
DS=DR(IMAXl 
AOS=A/S 
GO TO 4 

C 
C HERMITE INTERPOLATION 

3 IM=I-1 
DX=XW(Il-XW(IM) 
XB=(X-XW(I))/DX 
XA= (X-XW ( IM 1) /DX 
HA=(l,+XA+XA)*XB*XB 
HR=(l.-XB-XB)+XA*XA 
HC=DX*XB*XA=XB 
HD=DX*XA*XA*XB 
GA=(XB+XB)*(l.+XA+XA+XB)/DX 
GB=(XA+XA)*(l.-XB-XB-XA)/DX 
GC=XB*:( XB+XA+XAI 
GD=XA*(XA+XB+XB) 
S=HA*R(IM)+HB=R(I)+HC*DR(IM)+HD*DR(I) 
A=HA*RA(IM)+HB*RA(I)+HC*DRA(IM)+HD*DRA(I) 
DS=GA~R(IM)+GB*R(I)+GC*DR(IMl+GD*DR(I) 
DA=GA*RA( IM)+GB*RA( 
AOS=A/S 

4 RZ=O .5*:( S+AOS-“A) 
DRZ=.5*( l.-AOS*AOS) 
ASQ=A*A 
RZSQ=RZ*RZ 
RETURN 

C 

I)-+GC*DRA(IM)+GD*DRA(I) 

*DS+AOS*DA 

C INPUT WING-BODY CONFIGURATION 
11 READ IKIN, (TALK(I),I=l,ZO) 

WRITE(K0,410) (TALK(I),I=l,20) 
REAO (KIN,4121 SR,ELR,CE 
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WRITE(KOt413) 
WRITE(Kfl,411) SRTELRTCE 
k’RITE (Kfl,414) 
DT) 12 I=1125 
READ(KIN,412)XbI(I),R(I),nRo,RA(I),RA~I~,t7RA~I~ 
IF(R(I))13,12,12 

1.2 ~RITE(KD,411)XW(I),R(I),~R~I)rRA(I)tDRA(I~ 
13 IMAX=I-1 

XIfQIT=XW( 1) 
XBC)DY=XW ( IMAX 1 
R F T II R i\! 
END 
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I C /I 

! 
t C 

C 

SUBROUTINE DERIV 

COMPLEX ZTA,DZT,SGM,DSG,~-JDSG,DSGX,O,C,VW 
DIMENSION ZTA(~~),DZT(~~),SGM(~~),DSG(~~),DDSG(~~),DSGX(~~),C(~O)T 

10~99),GAM(99),XEPS(lO~,EPS(lO~,TALK~2O) 
COMMON /CDMl/ ZTA,DZT,SGM,DSG,DDSG,OSGX,O,C 
COMPlDN /CDM2/ TALK, 

1A,S,DA,DS,RZ,DRZ,SR,ELR,CE,GA~~,JMAX,X,ADS,ASQ,RZS~,~XEPS,CL~TDL, 
2CAL,SAL,TALF,IEMAX,IEPS,W~VI~.~,XEPS,EPS,DXI~~,XBDDY,KI~’,K~,XINIT,~~ 

GET SIGMAS 
DD I1 J=Z,JblAX 
C(l)=(ZTA(J)+ASQ/ZTA(J)I*.5 
C(2)=C(l)*C(l)-RZSO 
C(3)=CSORT(C(21) 
CI4)=A/ZTA(J) 
C(5)=c(4)*c(4) 
c(6)=.5:::( 1.-C(5) 1 
SGM(J)=C( l)+C(3) 
DSG(J)=C(6)::-(1.+~(1)/C(31) 

11 DDS~(J)=(C(5)/ZTA(J)+(C(7)~:C(l):::C(5)/ZTA(J)-RZS~-~-C(~)~~C(~~))/ 
l(C(2):~C(3) I )/DSG(J)+.5/DSG( J) 

DERIVATIVES 
CL=O. 
Dfl 27 K=2,JMAX 
V’,l=nDSG(K,:::GAM(K, 
RI- 23 1=2, JMAX 
IF(I-K) 21,22,21 

71 Vl~I=V’“+GAM(I)/(SGM(K)-SGI1(1)) 
72 C(l.)=CDNJG(SGM(I)) 
73 VW=VW+~SGM~I~/~SGM~I~~~SG~~~K)+RZSQ~-1./(S~M~K~+C~l~~-C~~~/~C~l~~~SG~ 

1 ( K 1 -PZ SQ 1 1 *GAM ( I 1 
VW=CMPLX(O., -1. )c(VW/CAL+TALF=( l.+RZSQ/(SGM(K)*S~M(K) 1) )-xDSr,(K) 

l+A+OA/ZTA(Kl 
DZT(K)=CONJG(V!*lI 
C( l)=CnNJG(SGM(K) 1 
IF(K-JMAX)26,24,24 

24 IF(CIDVIN)25,26,25 
25 CL=CL+~~JflVIN 

Gr! TO 27 
26 CL=CL+REAL(SGM(K)-RZSa/Co)=GAM(K) 
27 CONTINUE 

CL=75.132741/CALz:CL/SR 
RETURN 
END 
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SUBROUTINE VORTXtM) 

COMPLEX fTA,DZT,SGH,DSG,DDSG,DSGX,QpC,VW 
DIMENSION ZTA(99),DZT(99),SGM(99),DSG(99)~DDSG(99),DSGX(99),C(lO), 

1Q(99),GAM(99),XEPS(lO~,EPSOrTALK(20) 
DIMENSION XW( 10 1 
COMMON /COMl/ ZTA,DZT,SGM,DSG,DDSG,DSGX,Q,C 
COMMON /COM2/ TALK, 

lA,S,DA,DS,RZ,DRZ,SR,ELR,CE,GAM,JMAX,X,AOS,ASQ,RZSQ,DXEPS,CL~TOL, 
2CAL,SAL,TALF,IEMAX,IEPS,WOVIN,XEPS,EPS,DXIN,XBODY,KIN,KD,XINIT,DD 

C 
400 FORMAT ( /49H NEW VORTEX INTRODUCED USING THEORETICAL METHOD) 

C 
JM= JMAX 
IF(M) 102,101,102 

101 WRITE (K0,400) 
102 JMAX=JMAX+l 

VI=O. 
SNA=SAL/6.2831853 
IF(JM-1) lO,lO,ll 

10 VDLD=.5*SNA 
VI=.5*SNA 
GO TO 15 

11 DO 12 J=Z,JM 
C(3)=SGM(J)-RZSQ/SGM(J) 
c(3)=c(3)*c(3) 

12 VI=VI+GAM(J)*AIMAG(l./CO) 
VI =-s*v1/3.1415927 

13 FAC=AOS*AOS 
VI=(l. -FAC*FAC)*VI+AOS*DA 

15 VAV=.5*(VI+VOLD) 
C(lO)=CMPLX(VI,O.) 
VOLD=VI 
DL S=DD+VAV 

18 WNl=S+DLS 
WN2=WNl+ASQ/WNl 
DLT=.S*(WN2+SQRT~WNZ*WN2-4.*RZSQ~~/RZ 
DLI=DLI*DLI 
WNl=DLI*DLI 
WN2= 1 .-2.*ASQ/RZSQ 
WN3=SQRTt1.+2.*WN2+WNl) 
CON=2.~DLS/ALOG(WNl+(WN3+DLI+WN2)/(WN3+1.~DLI*WN2)) 
SUM=.5*SAL 
IFtJM-2)3,1,1 

1 DO 2 J=2,JM 
2 SUM=SUM-REAL(GAM(J)/(SGM(J)-RZSQ/SGMO)) 
3 GAM(JMAX)=CON*(SUM+SUM) 

31 WN1=.5*(S*S+ASQ/S=ASQ/S) 
WNZ=LS+DLS)*(S+DLS) 
WN3=SQRT(WN2*WN2+2.*WNl*WN2+ASQASQ) 
WN4=S*S-WNl 
WN5=ABS((WNl*WNi?-ASQ*tWN3+ASQ))/WN4*WN2) 
WOVIN=WN3-WNl~ALDGIlWN3+WN2-WN2-WNl~/WN4~-ASQ*ALOG~WN5~ 
WOVIN=.5*WOVIN*GAM(JMAX)/DLS 
YS=CON+SQRT(RZSQ+CON+CON) 
SUM=.5*(YS+RZSQ/YS) 
YZ=SUM+SQRTLSUM=SUM-ASQ) 
ZTA( JMAX)=CMPLX(YZ,O. 1 

4 CALL DERIV 
RETURN 
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SUBROUTINE VORTXtH) 
C 

COMPLEX ZTAIDZT*SGHIDSGIDDSGIDSGXIP,C,VW 
DIMENSION ZTAl99~,DZTl99~rSGMl99~~,DSGl991.DDSG1991.DSGXl99lrC110~, 

1Q~991rGAM~991rXEPS(10)rEPS~lO1~TALKlZOl 
DIMENSION XWIlO) 
COMMON /COMl/ ZTA,DZT.SGMtDSG,DDSG.DSGX~Q.C 
COMMON /COMt/ TALK, 

1A,S~DA,DS,RZ.DRZ,SRIELRICEICAMIJMAX.X,AOS,ASQ,RZSQ,DXEPS,CL,TOL~ 
~CAL,SALITALFI~EMAXIIEPS,WOVIN,XEPS~EPS.DXIN.XGODY,KIN,KO,XINIT,DD 

C 
: -. 400 FORMATl149H NEW VORTEX INTRODUCED USING THEORETICAL METHOD1 

C 
JY=dMAX 
IF(M) 102.101.102 
WRITE lK01400l 
JMAX=JMAX+l 
v1=0. 
SNA=SAL/6.2831653 

101 
102 

10 

11 

12 

13 

15 

18 

1 
2 
3 

31 

. ‘4 

IFIJM-11 lOtlOt 
VOLD=.S*SNA 
V1=.5*SNA 
GO TO 15 
DO 12 J=Z.JH 
Cl31=SGMtJ)-RZSQ/SGMO 
c(3~=cl3)+c13~1 
VI=VI+GAH(J~+AIMAGI1./COI 
VI=-S+VI/3.1415927 
FAC=AOS*AOS 
vI=fl .-FAC*FAC)+VI+AOS+DA 
VAV=.5+fVI+VOLDI 
Ct1OI=CMPLXIVI*o.~ 
VOLD=VI 
DLS=DD*VAV 
WNl=S+DLS 
WNZ=WNl+ASQ/WNl 
DL1=.5*1WN2+50RT~WN2*WN2-4.*RZSQl1/RZ 
DLI=DLI+DLI 
WNl=DLI*DLI 
WN2=1 .-Z.‘ASQ/RZSQ 
WN3=SQRTll.+Z.*WNZ+WNl) 
CON=2.+DLS/ALOGIWN1+IUN3+DLI+WN2~/lWN3+1.+DLI~WN2ll 
SUM=.5*SAL 
IF(JM-213.1.1 
DO 2 J=Z,JM 

WN1=.5*(S*S+ASQ/S+ASQ/S1 
WNZ=(S+DLSl*(S+DLS) 
WN3=SQRT(WNZ*WNZ-2.*WNl+WNZ+ASQ*ASQI-t 
WN4=S*S-UN1 
WN5=ABSl(WNl+WNZ-ASQ*TWN3+ASQ)l/(WN4+WN2)1-2 
WOVIN=WN3-WN1~ALOG~~WN3+WN2-WNl~/WN4l-ASQ~ALOG~WN5~ 
WOVIN=.5+WOVIN+GAhfJMAXl/DLS 
YS=CON+SQRT(RZSQ+CON*CONT 
SUM=.5*lYS+F?ZSQ/YS) 
YZ=SUM+SQRTISUM+SUM-ASQI 
ZTAlJMAXI=CMPLXfYZ.O.T 
CALL ‘DER IV 
RETURN 
END 

Figure 1. - Corrected version of subroutine 
VORTX(M) (appearing on page 70.) 
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SUBROUTINE VORTX(M) 
C 

COMPLEX ZTA,OZT,SGM,DSG,DDSG,DSGX,Q,C,VW 
DIMENSION ZTA(99),DZT(99),SGM(99),DSG(99),DDSG(99),DSGX(99),C(lO), 

lQ(99),GAM(99),XEPS(lO~,EPS~lO~,TALK(20) 
DIMENSION TGAM(6,5) 
COMMON /COMl/ ZTA,OZT,SGM,DSG,DDSG,DSGX,Q,C 
COMMON /COM2/ TALK, 

lA,S,DA,DS,RZ‘,DRZ,SR,ELR,CE,GAM,JMAX,X,AOS,AS~,RZS~,DXEPS,CL,TOL, 
2CAL,SAL,TALF,IEMAX,IEPS,WOVIN,XEPS,EPS,DXIN,XBODY,KIN,KO,XI~~IT,DD 

COMMON /COM3/ TGAM,DELA,JALF,JALPvDALF 
C TGAM(I,1)=5 VALUES OF DS/DX FOR 1=2,6 
C TGAM(l,J)=4 VALUES OF TANAL FOR J=2,5 
C 

400 FORMAT(/44H NEW VORTEX INTRODUCED LJSING TABLE LOOK-UP) 
C 

JM= JMAX 
WOVIN=O. 
IF~M)102,101,102 

101 WRITE (K0,400) 
TGAM(l,l)=O. 
TGAM( 1,2)=0.08749 
TGAM(l,3)=0.17633 
TGAM( 1,4)=0.26795 
TGAMI 1,5)=0.36397 
TGAM(2,1)=0.0 
TGAM(3,1)=0.125 
TGAM(4,1)=0.25 
TGAM(5,1)=0.375 
TGAM(6,1)=0.5 
TGAM(2,2)=0.0038 
TGAM( 2,3)=0.0152 
TGAM(2,4)=0.0335 
TGAM(2,5)=0.0583 
TGAM(3,2)=0.0374 
TGAM(3,3)=0.0882 
TGAM(3,4)=0.1514 
TGAM(3,5)=0.2196 
TGAM(4,2)=0.0690 
TGAM(4,3)=0.1466 
TGAM(4,4)=0.2332 
TGAM(4,5)=0.3278 
TGAM(5,2)=0.1200 
TGAM(5,3)=0.2174 
TGAM(5,4)=0.3180 
TGAM(5,5)=0.4284 
TGAM(6,2)=0.1760 
TGAM(6,3)=0.2970 
TGAM(6,41=0.4170 
TGAM(6,5)=0.5374 

102 JMAX=JMAX+l 
SNA=SAL/6.2831853 
DO 41 J=3,5 
DELA=TALF*(l.+AOS=AOS)-TGAM(l,Jl 
IF (DELA) 42,41,41 

41 CONTINUE 
42 JALF=J-1 

JALP=J 
DELA=TALF*( l.+AOS+AOS)-TGAM( 1,JALF) 
DALF=TGAM(l,JALP)-TGAM(l,JALF) 



DO h3 1=4,6 
DELS=DS-TGAM(I.1) 
IF(DELS) 44,43,43 

43 CONTINUE 
44 IDS=I-1 

IDP=I 
DELS=DS-TGAM( IDS, 1) 
DDS=TGAM(IDP,l)-TGAM(IDS,ll 
FO=TGAbi ( IDS, JALF 1 
GAMA=(TGAi”l(IDS,JA.LP)-Fn)/DALF 
GAMB=(TGAK(IDP,JALF)-FO)/DDS 
GAMC=((TGAM(IDP,JALP)-FO)/DALF-GAMA)/DDS-GAMB/DALF 
GAr-I 1 JMAX )=DD:::( FO+DELA~GAMA+DELS*( GAMB+DELA:::GAMC 1 ) 

EVALUATE Y Z 
SUH=.S:::SAL 
IF(JM-2) 3,1,1 

1 DO 2 J=2,JM 
2 SUiq=SUM-REAL(GAM(J)/(SGK(J)-RZSQ/SGMtJ))) 
3 CflN=GAMl( JMAX)/(SUM+SUM) 

YS=CON+SORT(RZSO+CON~CONl 
SUK=.Sf:(YS+RZSO/YS) 
YZ=SUM+SBRT( SUM+SUM-ASO) 
ZTA( JMAX)=CMPLX(YZ,O.) 
CALL DERIV 
RETURN 
E I\!D 
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TABLE I 

MULTIPLE VORTEX MODEL 

INPUT DATA 

S S T WING-BODY PLANFORM I MARCH 11, 1966 

SR LR Cl 
0.43900003 03 0.1911000E 02 0.39280003 02 

X S DS/‘DX A DA/‘DX 
0.18920003 02 0.1630000E 01 0.22719003-00 0.1630000E 01 0.46400003-01 
0.34480003 02 0.5170000E 01 0.22719003-00 0.2000000E 01 0.96000003-02 
0.34480003 02 0.5170000E 01 0.60086003 00 0.2000000E 01 0.9600000E-02 
0.48420003 02 0.13640003 02 0.60086003 00 0.1960000E 01 -0.22200003-01 
0.48420003 02 0.13640003 02 0. 0.1960000E 01 -0.22200003-01 
0.51960003 02 0.13640003 02 0. 0.1870000E 01 -0.3600000E-01 

tc,) forebody = 0.0758 

kCM)forebody = 0.1115 

Attached Flow 

('N) a = 2.103/radian 

('Ml a = O.O69l/radian 

Note that attached flow 
includes the forebody. 

76 



TABLE II 

MULTIPLE VORTEX MODEL 

INPUT DATA 

OGEE MODIFIED F 5 D WING 

SR LR - Cl 
0.6610000E 03 0.22590003 02 0.2713000E 02 

X S DS/DX A 
0.13625003 02 0.44160003 01 0.2200000E-00 0.18370003 01 0. 
0.15925003 02 0.5000000E 01 0.275OOOOE-00 0.18370003 01 0. 
0.1863300E 02 0.58330003 01 0.35300003-00 0.18370003 01 0. 
0.20791003 02 0.66670003 01 0.42800003-00 0.18370003 01 0. 
0.22583003 02 0.7500000E 01 0.49500003-00 0.18370003 01 0. 
0.24142003 02 0.83330003 01 0.55600003 00 0.18370003 01 0. 
0.25583003 02 0.91670003 01 0.6100000E 00 0.18370003 01 0. 
0.26933003 02 0.1000000E 02 0.64600003 00 0.18370003 01 0. 
0.28166003 02 0.10833003 02 0.66900003 00 0.18370003 01 0. 
0.29475003 02 0.11667003 02 0.6810000E 00 0.18370003 01 0. 
0.3063300E 02 0.1250000E 02 0.66700003 00 0.1837000E 01 0. 
0.31491003 02 0.13333003 02 0.6130000E 00 0.18370003 01 0. 
0.32916003 02 0.14166003 02 0.6150000E 00 0.1837000E 01 0. 
0.34850003 02 0.1500000E 02 0.47400003-00 0.18370003 01 0. 
0.36933003 02 0.15833003 02 0.32700003-00 0.18370003 01 0. 
0.42083003 02 0.16691003 02 0. 0.18370003 01 0. 

(CL) forebody = 0.0649 

(CM)forebody = 0.0768 

3, LYbb 

Attached Flow 

@NJ a = 2.053/radian 

tcM) a = O.OgO/radian 

DA/‘DX 

Note that the attached flow 
results include the forebody. 
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Figure l.- Simplified flow pattern on sharp-edged delta wings. 
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Slender Body Theory 
(Ref. 8) 

Lawrence Theory 
(Ref. 16 

/ I I 

r n-3.7 IlnJ r. 7..3--- uvIILaA a,lu bluaer 
(Ref. 15) 

0 Experiment Lange/Wacke (Ref. 11) 
n Experiment Bartlett and Vidal 

I (Ref. 7) I 
0 1 2 3 4 

Aspect ratio 

(a) Comparison of lift-curve slope with other theories and experiment. 

Figure 2.- Linear (attached flow) aerodynamic characteristics of 
delta wings by the method of Lawrence (Ref. 16). 
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(b) Predicted normal force and center of pressure. 

Figure 2.- Concluded. 
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Figure 3.- Models tested iii water tank. 



Figure 4.- Water tank arrangement for surface 
and underwater photography. 
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Figure 5.- Selected movie frames of double delta 
wing in water tank. 



C 
% 

0.5 

0.4 

0.3 

0.2 

0.1 

Aspect 
ratio 

4 6 8 10 12 14 
Angle of attack, a, degrees 

16 18 

Figure 6.- Experimental values of separation normal force 
(measured minus attached) for delta wings from Refs. 2, 
6, 7, and 31). 
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Figure 7.- Calculated shedding rates for use in semi-empirical method. 
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Figure 8.- Theoretical method convergence check for delta wings 
(a = 100). 
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Figure 9.- Semi-empirical method convergence check for delta wing of aspect ratio 2. 



Figure lO.- Double-delta wing-body configuration. 
(See Table I for dimensions.) 
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Figure ll.- OGEE modified F5D wing-body configuration. 

(See Table II for dimensions) 
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Figure 12.- Calculated and experimental normal force and 
center of pressure for gothic wing of aspect ratio 1.0. 
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Figure 13.- Comparison of theoretical methods with experimental 
measurements of normal force and center of pressure on delta wings. 
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Figure 13.- Concluded. 
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Figure 14.- Comparison of semi-empirical method with 
experimental measurements of normal force and center 
of pressure on delta wings. 
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Figure 14.- Concluded. 
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Figure 15.- Theoretical slender-body lift coefficient 
for delta wings with separated flow. 
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Figure 16.- comparison of calculated and experimental separation normal force for delta wings. 
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Figure 17.- Comparison of 'corrected' normal force and 
center of pressure with experimental measurements for 
delta wings. 
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Figure 18.- Comparison of calculated normal force and 
center of pressure with experimental measurements 
for double-delta wing-body configuration. 
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Figure 20.- Predicted and measured vortex locations 
on delta wing of aspect ratio 1.0. 
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Figure 21.- Positions of separation vortices 
on a double delta wing. 
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Figure 22.- Vortex sheet development on an aspect 
ratio 1.0 delta wing at 15' angle of attack - 
theoretical shedding rates. 
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Figure 23.- Vortex sheet development on an 
aspect ratio 1.0 delta wing at 15' angle 
of attack - empirical shedding rates. 
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(a) Plan view. 

(b) Side view. 

Figure 24.- Vortex patterns over double-delta 
wing-body combination as observed in Ames 7- 
by lo-foot wind tunnel (a = 16O). 
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Figure 25.- Vortex sheet shape calculated by theoretical method at 
trailing edge of double-delta wing-body combination. 
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Figure 26.- Calculated lateral vortex center of gravity positions 
over double-delta wing at a = 15O. 


